
Four Effective Strategies
for Optimizing Application
Security with ASPM
In today’s digital age, the cybersecurity landscape is
evolving at an unprecedented pace, presenting a complex
array of challenges for businesses across all sectors. With
the advent of sophisticated cyber threats and the rapid
increase in attack vectors, traditional security models are
being pushed to their limits.

1.	 Silencing the Noise: Effective Strategies to Tame Alert Overload
2.	 Empowering Developers: Smoothing the Transition with Shift Left
3.	 Simplifying Complexity: Unifying Siloed Data for Enhanced Security Visibility
4.	 Open Source Advantage: Customizing AppSec for Agility and Control

Application Security Posture Management (ASPM) is a holistic approach to fortifying
software applications throughout their lifecycle. This eBook outlines four effective
strategies to optimize AppSec with ASPM:

By implementing these strategies, organizations can enhance security, streamline
workflows, and empower developers to build more secure and resilient applications

eBook

Limitations of Current AppSec Models

03 04

The limitations of current AppSec models are a sobering reality – many teams grapple
with insufficient tools and processes to effectively close security gaps.

Traditional AppSec approaches are increasingly proving inadequate in scaling with
these threats. Many security teams find their current tools and processes insufficient
to keep pace with modern applications’ rapid development and deployment cycles. This
inadequacy stems from several core limitations:

•	 Inability to effectively manage the volume of alerts.
•	 High dependency on manual processes and interventions.
•	 The burden is placed on developers to incorporate security measures without

impacting productivity.
•	 Tool sprawl and the challenges of managing multiple, often siloed, security solutions.

Application Security Posture Management is a comprehensive approach to enhancing the
security of software applications throughout their lifecycle. It encompasses a variety of
best practices and tools designed to assess, monitor, and improve the security posture of
an organization’s applications, crucial for integrating security into DevOps (DevSecOps).
By integrating ASPM into CI/CD pipelines, organizations can detect vulnerabilities early,
automate security controls, and maintain a unified view of application health, thereby
managing risks effectively and building trust with users. This holistic approach is
increasingly vital due to the complexity of modern software applications and the growing
cybersecurity threats.

Figure 1: Real-World SDLC Security Threats

Key Statistics

•	 75% of security professionals have observed an increase in cyberattacks
over the past year. (CFO)

•	 Global cybercrime damage costs are expected to grow by 15% per year
over the next two years, reaching $10.5 trillion USD annually by 2025.
(Forbes)

Key Components of a Successful ASPM Strategy

Given these challenges, there is a pressing need for a scalable and effective
approach to Application Security Posture Management (ASPM). ASPM emerges as
a comprehensive strategy designed to address the limitations of traditional AppSec
models by focusing on automation, integration, and the strategic use of open-
source tools. The key components of a successful ASPM strategy include:

•	 Proactive Alert Management: Strategically manages and prioritizes security
alerts to actively prevent alert overload and reduce fatigue, efficiently addressing
the high volume of alerts encountered in security operations.

•	 Automated Security Processes: Implement automation to minimize manual
efforts in security checks, thereby alleviating the dependency on labor-intensive
procedures and reducing the burden on developers.

•	 Holistic Security Integration Across SDLC: Seamlessly integrate security insights
throughout the Software Development Life Cycle (SDLC) to ensure a unified view
of application security, countering the issues arising from tool sprawl and siloed
solutions.

•	 Strategic Open-Source Integration in ASPM: Optimize your security toolchain by
integrating open-source tools within the ASPM framework. This approach curbs
costs and enhances flexibility and transparency, enabling a focus on investing in
ASPM platforms that provide a unified, value-driven view of security operations.

This eBook provides practical strategies
for strengthening your application security
posture using ASPM. Our goal is to empower
AppSec teams with the insights and tools
necessary to confidently overcome common
ASPM challenges, resulting in more secure
and resilient applications.

Figure 2: Securing the End-to-End SDLC

05

Silencing the Noise: Effective
Strategies to Tame Alert Overload

01

Alert overload and fatigue pose
significant challenges for AppSec teams.
A constant flood of miscategorized
security alerts, ranging from trivial to
critical, overwhelms analysts and impedes
their ability to discern actual threats
swiftly. This barrage, compounded
by information overload, significantly
complicates the extraction of actionable
insights, further straining resources and
efficiency.

The ever-growing number of security tools in the software delivery pipeline contributes
significantly to the volume of alerts generated. While each tool serves a specific purpose, not
every alert signals critical risk. This constant stream of notifications challenges AppSec teams,
potentially burying severe threats within a sea of noise.

A 2023 study by the Ponemon Institute found that the average enterprise processes over
17,000 malware alerts in a typical week. This constant influx hinders the ability of teams
to maintain focus and effectively prioritize potential threats.

Alert fatigue overwhelms AppSec
teams, hindering quick threat
identification amidst constant
noise and information overload. The crux of navigating this overload

is refining the ‘Signal to Noise’ ratio,
ensuring that critical alerts stand out.

Teams are overwhelmed by a barrage of
security alerts, many of which are false
positives that misclassify benign activities
as threats. These erroneous alerts flood
systems, obscuring critical warnings and
hindering security operations. False positives
are a significant drain on resources, forcing
security teams to spend valuable time
investigating them instead of real threats.
This misallocation can delay responses to
actual vulnerabilities, potentially leading to
undetected breaches, data loss, financial
damage, and erosion of customer trust.

The consequences of alert fatigue cannot be overlooked. Overwhelmed teams increase the
risk of missing critical breaches, leading to potential data loss and damage to reputation.
Furthermore, burnout and resource strain contribute to higher turnover rates within
cybersecurity teams – a serious concern given the skills shortage in the field.

False positives persist due to aggressive
detection settings, outdated threat
definitions, and a lack of contextual
awareness by security tools. Each false alarm
not only wastes time but also impacts the
morale and effectiveness of the security
team, leading to alert fatigue and increased
risk of oversight.

The Issue of Alert Overload

The False Positive Dilemma

The Business Impact

The Sheer Volume

06 07

Given the sheer volume of alerts, prioritization becomes indispensable. Techniques
that assess the severity, exploitability, and impact of identified vulnerabilities can
help AppSec teams allocate their efforts where they are most needed.

•	 Risk-Based Approach: Categorize alerts based on severity, exploitability, and
impact to ensure high-priority issues receive immediate attention.

•	 Prioritization Based on Business Context: One of ASPM’s key capabilities is its
ability to prioritize alerts based on the broader application and business context,
not just severity. This means that ASPM tools should help organizations decide
which issues need immediate attention and which can be deferred based on
their potential impact on the business. This approach helps reduce the alert
fatigue that security teams often face.

Best Practice: Define what constitutes a critical alert
based on the specific risk profile and operational context
of your software delivery processes.

In the dynamic environment of application security, automation can swiftly respond to critical
alerts to mitigate risks before they escalate. By implementing intelligent automation workflows,
organizations can focus on high-impact tasks while routine alerts are managed systemically.

•	 Automated Triage and Response: Configure your systems to categorize alerts by severity
automatically. High severity alerts can trigger immediate investigations or remediation
actions, such as patching known vulnerabilities or isolating affected systems.

•	 Integration and Orchestration: Embedding automated security within the development
pipeline ensures that security checks are a natural part of the development process,
occurring in real-time with minimal disruption.

•	 Use Case in Automation: Consider an automated system that, upon detection of a critical
vulnerability, not only alerts the security team but also cross-references the vulnerability
with deployed patches, reducing false positives and focusing efforts on unresolved issues.

Prioritization Techniques

Leveraging Automation for Critical Alerts

Bob Boule, VP Of Products, OpsMx

Effective Alert Management Strategies

A flexible and customizable alerting framework is central to overcoming alert overload.
This adaptability ensures that alerts are relevant and actionable, aligning with the
organization’s unique needs.

Figure 3: Security Alerts and Trends

Embracing automation across our
toolchain transforms our security
posture from reactive to proactive,
significantly reducing the need for
manual intervention and allowing
us to focus on strategic security
initiatives.

08 09

To improve alert management further, several strategic approaches are mapped to the
flowchart, with strategies detailed below.

1.	 Automated Remediation and Risk Scoring: When a known vulnerability with clear context is
identified, automated remediation is initiated, or the issue is escalated based on a unified risk
score.

2.	 Contextual Analysis for Clarity: If the alert lacks context, ASPM tools perform a contextual
analysis. Alerts that can’t be clarified may be bulk handled if deemed low-risk.

3.	 Actioning on Unified Risk Scoring: For alerts that pass contextual analysis, a unified risk
score determines the priority and the necessary response—whether immediate manual
action or additional automated remediation.

4.	 Ongoing Monitoring for Assurance: Continuous monitoring across all stages ensures that
fixes are effective and new vulnerabilities are identified promptly, maintaining a robust
security stance.

Navigating the challenge of alert overload in ASPM necessitates a multifaceted approach that
balances the customization of alert management with the strategic use of automation and
prioritization techniques. By refining the “Signal to Noise” ratio and overcoming tool and data
silos, AppSec teams can ensure that critical alerts receive the attention they require, enhancing
the overall security of the software delivery process.

Example of Strategies to Minimize Alert OverloadUser-driven Alert Management
User-driven alert management acknowledges the expertise of individual team members,
giving them control over the security alerts they receive. This approach ensures that
alerts are received by the right people and actioned promptly and efficiently.

Role-based Alert Routing: Implement a system where alerts are routed according to
the role and expertise of team members, ensuring that the right alerts reach the right
experts at the right time.
Customizable Alert Subscriptions: Enable team members to subscribe to specific types
of alerts relevant to their area of responsibility. This personalization reduces noise and
focuses attention on areas where an individual can have the most impact.
Example Use Case for Pub/Sub Model: A developer working on payment systems can
subscribe to alerts related to financial data security, receiving immediate updates on new
threats or vulnerabilities in payment-related code libraries.

By refining these approaches, organizations can create an alert management ecosystem
that is both responsive and responsible, catering to the strengths and needs of the
security team and ultimately fostering a culture of security-mindedness across the entire
organization.

Figure 4: Alert management flowchart

10 11

Empowering Developers:
Smoothing the Transition with Shift Left
The adoption of the Shift Left philosophy in DevSecOps practices, intended to embed
security early in the software development lifecycle (SDLC), has undeniably brought
security into the forefront of development processes. However, this strategic shift
has also introduced significant challenges for development teams, compounding their
pressures in an already demanding environment.

Core Challenges Exacerbated by Shift Left:

•	 Manual Intervention: Despite advances in automation, manual security processes
remain prevalent, consuming valuable development time and resources. This slows
down the SDLC and diverts developers from their primary focus—building and
refining software.

•	 Complex Security Tooling: The integration of multiple security tools, each with its
own learning curve and maintenance requirements, adds complexity. Developers must
navigate these tools while meeting their project deadlines, often without adequate
training in these specialized security applications.

•	 Insufficient Security Expertise: With the Shift Left approach, developers are
expected to take on security responsibilities traditionally handled by security
professionals. This expectation overlooks the specialized nature of security work
and places an unrealistic demand on developers who may not have the necessary
background in security.

To truly achieve the goals of Shift Left in DevSecOps, it’s imperative to effectively align the
development teams with these new security practices. Simply increasing their workload is not a
sustainable strategy. AppSec teams must deliver solutions that not only bolster security but also
enhance and accelerate the work of development teams. The success of ASPM hinges on its
acceptance by developers, who must see it as a facilitator, not a hindrance, making their tasks
easier and more efficient.

•	 Slower Development Cycles: Increased workloads and context-switching can
lead to delays in feature releases.

•	 Compromised Innovation: If developers are constantly firefighting security
issues, less time is available for creative work and innovation.

•	 Burnout and Frustation: Overburdened developers may become demoralized
or experience burnout. This can hurt morale and productivity.

•	 Security Debt: If teams postpone or insufficiently address security issues, a
backlog of security risks (security debt) can build up, creating larger future
problems.

Enabling Developers with ASPM Insights

Streamlined Workflow: Real-Time CVE Identification and Remediation

A key advantage of Application Security Posture Management (ASPM) is its ability to swiftly
identify vulnerabilities, such as Common Vulnerabilities and Exposures (CVEs), within the
development process and provide context within the application. This allows developers to
address these issues promptly, preventing them from escalating into more significant problems.
By integrating ASPM solutions into the development lifecycle, organizations can reduce the
burden on developers, enhancing both productivity and security.

The integration of ASPM solutions into development environments significantly streamlines the
process of identifying and resolving security issues. Here’s a detailed breakdown of how this
integration benefits developers:

•	 Integration into Development Environments: ASPM tools are seamlessly incorporated into
the environments and IDEs developers already use, minimizing disruption and learning
curves.

•	 Real-Time Scanning: While developers write code, ASPM tools continuously scan for
potential vulnerabilities, providing immediate feedback without waiting for scheduled scans.

•	 Immediate Feedback: When a CVE is detected, the tool alerts the developer with contextual
information about the vulnerability and potential fixes directly within their workflow.

•	 Guided Remediation: Developers receive concise, step-by-step instructions on remedying
the issue, integrated into their current projects, promoting quick and efficient resolution.

•	 Continuous Monitoring: Following a fix, ASPM tools persist in monitoring the code to verify
the resolution and continue checking for new vulnerabilities.

This workflow exemplifies how ASPM can expedite the detection and resolution of security
issues, allowing developers to maintain their development pace while enhancing security.

12 1302

1.	 Start Development: The process begins when development starts.
2.	 Write Code: Developers write code in their local environment.
3.	 Code Committed to Repository: Code is committed to a version control

repository.
4.	 Automated Security Scan: Automatically scan the committed code for

security vulnerabilities using security tools.
5.	 Immediate Alert to Developer: If vulnerabilities (such as CVEs) are

detected, an immediate alert with details is sent to the developer.
6.	 Automated Remediation Suggestion: ASPM tools suggest fixes or

patches for the detected vulnerabilities.
7.	 Developer Reviews Suggestions: The developer reviews the suggested

fixes.
8.	 Accept: If the suggestion is adequate, the developer applies it.
9.	 Modify: If the fix needs adjustment, the developer customizes it manually.
10.	Apply Automatic Fixes/Customize Fix Manually: Depending on the action

taken, the developer applies the automated fixes or manually adjusts
them as necessary.

11.	Re-scan Code: The modified code is re-scanned to ensure no new issues
have arisen and all previous issues are resolved.

12.	Code Merged to Main Branch: Once the code passes the security
checks, it is merged into the main branch.

13.	Continuous Integration/Deployment: The code undergoes continuous
integration and deployment processes.

14.	Deploy to Production: Successfully integrated and tested code is
deployed to the production environment.

15.	Monitor and Feedback Loop: Post-deployment monitoring occurs,
with feedback loops in place to ensure any new issues are promptly
addressed, leading back to further code development.

This flowchart demonstrates how integrating ASPM into the SDLC can
significantly streamline the security aspect of software development,
enhancing both the development process’s efficiency and security posture.	

Explanation of Each Step in the Flowchart:

Figure 5:
Developer
workflow

14

Effective ASPM Strategies for Reducing Developer Burden

Transforming Developer
Experience with ASPM

Here is a table outlining effective ASPM strategies designed to minimize developer burden and maximize productivity by
integrating security more deeply and seamlessly into the development process:

Through strategic integration of ASPM,
organizations can significantly alleviate
the burden on developers, transforming
security from a disruptive requirement into a
beneficial enhancement of their workflows.

These strategies ensure that developers
are equipped to handle security issues
efficiently and are empowered to contribute
to the security posture proactively.

The goal is to make ASPM tools
indispensable to developers by making their
jobs easier, not harder—turning ASPM into a
solution that developers want and demand
because it unequivocally enhances their
productivity and reduces their workload.

Strategy Description Impact On Developers

Automated Real-Time Scanning
Incorporate ASPM tools that perform con-
tinuous security checks directly within the
developers’ IDEs and commit pipelines.

Minimizes disruptions by providing instant
feedback and security insights without leav-
ing the development environment.

Developer-Centric Security Guidance
Deliver tailored security advisories and fix
suggestions directly within the tools devel-
opers use daily, such as through IDE plugins
or during code reviews.

Enhances developer efficiency by providing
clear, actionable security instructions along-
side regular coding tasks.

Proactive Security Integration
Embed security features and checks into the
standard development tools and platforms to
ensure security is a natural part of the devel-
opment lifecycle.

Reduces the need for separate security
steps, making security a seamless aspect of
daily activities.

Collaborative Security Practices

Facilitate a cooperative environment where
security and development teams collaborate
closely through tools and regular interactions
to enhance security without imposing addi-
tional burdens.

Promotes understanding and swift resolu-
tion of security issues, making security a
collective responsibility and benefiting from
diverse expertise.

Enhanced Training and Support
Provide ongoing training and support tailored
to the development environment and lan-
guages used, focusing on security practices
relevant to the developers’ daily tasks.

Builds competence and confidence in han-
dling security issues, reducing the perceived
burden and fostering a proactive security
posture.

15

Simplifying Complexity: Unifying Siloed
Data for Enhanced Security Visibility
As the software development lifecycle (SDLC) rapidly evolves, developers face a
proliferation of security tools, leading to siloed data and fragmented visibility. This
sprawl complicates effective security management. By strategically applying Application
Security Posture Management (ASPM), it’s possible to integrate these varied tools,
ensuring cohesive data context and streamlined workflows throughout the entire
development pipeline.

Navigating Tool Sprawl

Achieving Unified Visibility

In the modern software development environment, tool sprawl is an escalating problem.
Organizations find themselves saddled with an array of security solutions—each promising to
plug different security gaps. This proliferation leads to a complex security ecosystem where
critical data gets locked in tool-specific silos, hampering both visibility and efficiency.

Challenge of Complexity: Developers often struggle to navigate through a maze of security
tools, each with its own interface, requirements, and data outputs. The learning curve is
steep, and integration points are numerous, leading to increased setup time and potential for
misconfiguration.
Reduced Efficacy: When security data is scattered across multiple platforms, it’s challenging to
get a holistic view of the security posture. This fragmentation can lead to missed vulnerabilities,
as insights from one tool may not correlate with data from another.
Strategic Consolidation: Addressing tool sprawl necessitates a thoughtful strategy of
consolidation. By selecting tools that integrate well with each other and support the broader
goals of ASPM, organizations can simplify their security toolchain without sacrificing coverage.

Unified visibility is the linchpin of an effective ASPM strategy. It transcends the limitations of
tool sprawl by integrating data and toolsets to offer a comprehensive security overview. This
integration empowers organizations to make more informed decisions and respond to threats
with agility.

Figure 6: SDLC gets complicated

Figure 7: Example of unified application visibility

16 1703

Leveraging ASPM to Drive Value

Best Practices for ASPM Implementation

Benefits of Unified Visibility

The true value driver of ASPM lies in its ability to simplify and strengthen the security toolchain.
By serving as the integrative force behind the myriad of tools, ASPM enables organizations to
overcome the limitations of tool sprawl, delivering actionable security insights across the SDLC.

Unified Risk Scoring: Incorporate risk scoring methodologies that aggregate findings from
multiple tools to prioritize threats effectively.
API-Driven Integration: Utilize APIs to weave disparate tools into a cohesive fabric, ensuring
data flows freely and securely between them.
Orchestrated Remediation: Create automated remediation pathways that leverage insights
from the unified view, allowing for rapid, coordinated action against threats.

Data Integration: Centralizing data from various tools into a single repository is a vital step
toward unified visibility. It enables real-time analysis and contextual understanding of security
data, which is crucial for proactive threat management.
Holistic Context: ASPM provides the context necessary to understand the significance of
security data. By combining insights from various stages of the SDLC, ASPM platforms can
pinpoint where vulnerabilities are likely to impact the application most severely.
Streamlined Workflows: A unified view allows for the creation of streamlined workflows. Tasks
that once required accessing multiple systems can now be managed from a central console,
boosting productivity and reducing response times.

Unified visibility is the linchpin of an effective ASPM strategy. It transcends the limitations of
tool sprawl by integrating data and toolsets to offer a comprehensive security overview. This
integration empowers organizations to make more informed decisions and respond to threats
with agility.

Selection Criteria: Choose tools not just for their standalone capabilities but also for their ability
to integrate into the ASPM framework.
Vendor Collaboration: Engage with vendors to ensure that their tools are designed with
integration in mind, facilitating a more seamless ASPM experience.
Training and Enablement: Equip teams with the knowledge and skills to utilize ASPM platforms
effectively, translating unified visibility into operational security improvements.

Tool sprawl within the security toolchain is a complex challenge but one that can be addressed
with the strategic application of ASPM. By consolidating tools and achieving unified visibility,
ASPM becomes a force multiplier in the SDLC, enabling quicker responses, clearer insights, and
a more secure end product.

Faster Response Times
When all security data is visible
in one place, the time to detect
and respond to threats is
significantly reduced.

Enhanced Compliance Posture
Unified visibility simplifies
compliance by providing clear,
consolidated reporting on
security measures and incident
responses.

Improved Threat Detection
Integrated data leads to better
threat detection, as patterns
and anomalies that were
previously obscured by tool
silos become apparent.

Developer Empowerment
With accessible, unified
security data, developers can
make more informed decisions
about code and architecture,
embedding security into the
application’s fabric.

</>

18 19

Open Source Advantage: Customizing
AppSec for Agility and Control
Within the dynamic context of application security (AppSec), the choice between open-
source and proprietary software has far-reaching technical implications. As attack
vectors multiply and security requirements intensify, open-source software (OSS)
provides compelling benefits worth serious consideration by security practitioners.

The inherent transparency of OSS is a major advantage. Access to the source code
enables security teams to conduct in-depth audits, uncover potential vulnerabilities, and
tailor the software to their specific security needs. This open structure encourages a
collaborative environment where security patches and improvements can be developed
and integrated rapidly.

Moreover, the absence of licensing fees and vendor lock-in associated with OSS can
free up significant organization resources, allowing for greater investment in proactive
security measures and ongoing innovation.

Navigating Tool Sprawl

Table 2: Comparative analysis: OSS vs Proprietary Software

•	 Security and Open Source: Open source software invites transparent peer
review, often resulting in more rapid identification and remediation of security
vulnerabilities.

•	 Open and Flexible: The malleability of OSS allows for tailor-made security
solutions, ensuring that the software can evolve alongside emerging threats.

•	 No Vendor Lock-In: Freedom from vendor lock-in enhances an organization’s
agility in adapting to new security challenges without contractual limitations.

•	 Lower Cost: The cost-effectiveness of open source tools frees up financial
resources, allowing for investment in other crucial security areas.

Advantages of Open-Source for AppSec

Feature Open Source Software Proprietary Software

Cost Generally lower cost with no
licensing fees.

Higher costs due to licensing fees and
potential additional charges for updates.

Flexibility High; source code access allows
custom modifications.

Low; dependent on vendor for updates and
customizations.

Innovation
Speed

Fast; benefits from community
contributions.

Slower; limited to vendor’s timelines and
innovation strategies.

Vendor Lock-
In

None; freedom to switch tools and
adapt solutions.

High; switching costs and dependency on
vendor’s roadmap.

Security
Transparent; community scrutiny
helps identify and fix vulnerabilities
quickly.

Opaque; relies on vendor for security updates
and vulnerability management.

20 2104

Static Code Analysis

Secret Scanning

Binary / Image Scanning

Artifact Mangement With
Continuous Security Scanning

Environment and IaC Security

Build and Deployment

Security and Open Source: Transparent Vulnerability Management Job to be done Average Cost Of Commercial Alternatives

$10,000 - $50,000

$2,000 - $50,000

$2,000 - $50,000

$50,000 - $100,000

$5,000 - $20,000

$5,000 - $25,000

Open and Flexible: Custom-Fitted Security

No Vendor Lock-in: Agile Security Posture

Lower Cost: Maximizing Security Budget Efficiency

Open source software (OSS) is predicated on the principle of transparency. It offers an
open platform where security vulnerabilities can be identified and addressed collectively.
Unlike proprietary software, the source code in OSS is available for anyone to review,
which means a larger pool of developers can scrutinize the code for potential security
flaws. This collective vigilance often leads to more secure software.

OSS’s inherent flexibility is a tremendous asset for security teams. It allows organizations
to modify and customize the code to fit their specific security needs. As threats evolve,
security measures can be adapted without waiting for a vendor’s update cycle.

The absence of vendor lock-in with OSS gives organizations the agility to switch
between different tools or adapt them as required without being constrained by licensing
agreements. This ensures that their security infrastructure can quickly adapt to new
challenges.

Open source tools can significantly reduce costs, providing a financial advantage that
enables organizations to reallocate their budgets toward other critical security areas,
such as employee training or advanced threat detection systems.

Figure 8: Potential cost savings for a medium size company

22 23

Common Open-Source AppSec Tools

GitLab SAST

Snyk

Bandit

OWASP Depen-
dency-Check

ESLint

SonarQube

Trivy

Brakeman

OWASP Depen-
dency-Check

SAST tools analyzes source code for vulnerabilities, detects flaws early to enhance
security, and reduces remediation costs in the SDLC.

Software Composition Analysis (SCA) tools identify vulnerabilities and license issues in
open-source dependencies, helping secure applications by scanning libraries, package
manifests, and third-party components.

24 25

ZAProxy NiktoArachni

sqlmap

Dynamic Application Security Testing (DAST) tools analyze running applications for
vulnerabilities by simulating attacks, identifying security flaws like SQL injections and
cross-site scripting in real-time.

Secrets management tools securely store and manage sensitive data like API keys, passwords,
and certificates, ensuring encrypted access and minimizing unauthorized exposure in
applications.

HashiCorp Vault Conjur Bitwarden

Keywhiz

26 27

Vulnerability Management involves identifying, assessing, prioritizing, and
remediating security vulnerabilities in systems and applications to reduce exposure
and strengthen an organization’s cybersecurity posture.

Compliance as Code automates security and regulatory compliance checks within
the development process, ensuring consistent standards enforcement across
IT infrastructure.

Infrastructure security involves safeguarding IT systems and networks by
implementing measures like firewalls, access controls, and encryption to protect
against unauthorized access and attacks.

OpenVAS

Ansible

Lynis

Clair

InSpec

OSSEC

Nessus Essentials

OpenScap

Open-source software offers a potent
combination of cost efficiency, flexibility,
and collaborative security enhancement. For
organizations committed to robust AppSec
practices, integrating open-source tools into
their ASPM strategy can lead to significant
improvements in security posture without the
constraints associated with proprietary solutions.

OpsMx Delivery Shield enhances your application lifecycle with continuous security
posture management, providing global visibility and strict policy enforcement. The
challenges in today’s AppSec environment include tool fragmentation, disjointed
data, and the burden of ‘shift left’ on developers. OpsMx addresses these by
facilitating faster, more secure application releases, automated compliance, and
reduced overall costs.

Modern development and delivery demands seamless integration of security practices to avoid
bottlenecks. OpsMx tackles this challenge by embedding itself within the SDLC workflows.
This fosters “shift left” practices, empowering developers with real-time security feedback. By
providing actionable security recommendations, OpsMx enhances developer productivity and
visibility. This allows teams to prioritize rapid development and AppSec security standards
adherence.

OpsMx Secure Software Delivery Overview

How OpsMx Can Elevate Your AppSec Strategy

Security

OpsMx Delivery Shield

Software Development Lifecycle

Existing Security & DevOps Tools
Vulnerability management, code scanners, CI/CD

platforms, ticketing, cloud platforms, etc.

AppDev DevOps

OpsMx excels in securing your SLDC from developer to deployment, leveraging an Open
Software Delivery architecture and AI/ML-powered DevSecOps solution. We aim to help
organizations ship better software faster, with heightened security and compliance.

OpsMx captures every step in the process, enabling Automated Compliance
reporting and evaluation, including the Delivery Bill Of Materials.

Figure 10: OpsMx Application Security Architecture

28 29

OpsMx Delivery Shield takes a comprehensive, developer-to-deployment
approach to ensure application security and compliance, including:

•	 Application Lifecycle Visibility. Many organizations already have the
security data they need spread across their existing tools and processes.
OpsMx consolidates and analyzes that data in one place.

•	 Security Posture Evaluation. A moment in time security checks are

not enough. OpsMx continuously monitors security risks in application
releases across dev, test, staging, and production environments.

•	 Policy Enforcement. Control the release process with automated
approvals and release verification, as well as block high-risk releases.

•	 “Shift Left” Developer Productivity. Give developers more time to code
with actionable guidance on addressing security gaps.

•	 Incident Response. New vulnerabilities can be announced at any time.
With OpsMx, you can find them faster and fix them sooner

•	 Security Effectiveness and Compliance. How well is the organization
following its security policies and best practices? Replace manual data
collection and compliance reviews with on-demand reporting.

Our team is ready to provide a demo and assist you in implementing
effective application security posture strategies. Embrace a proactive
approach to application security posture management and safeguard your
software supply chain. Contact us today!

About OpsMx

OpsMx simplifies and intelligently automates secure software delivery,
enabling hundreds of thousands of developers at Google, Cisco, Western
Union, and other leading global enterprises to ship better software faster.
OpsMx is the first platform designed to securely deploy applications in
container, virtual machine, and multi-cloud environments. The company’s
120 employees serve customers from Silicon Valley, Hyderabad, and
Bengaluru offices, with funding from Dell Technologies Capital and
Foundation Capital. For more information,
visit opsmx.com

30

https://www.opsmx.com/

