
Add Continuous
Delivery to Jenkins
and Break the
Scripting Curse

The New Digital Transformation
and DevOps Paradigm:

Why DevOps is Key to Your Digital Transformation Journey

Use DORA Metrics to Track DevOps Maturity

Why Jenkins Pipeline is Insufficient to Attain High Software Delivery Performance

Extend Jenkins using OpsMx ISD

Use Cases of ISD

Conclusion

3

4

5

7

14

15

Table of Contents

3

Why DevOps is Key to Your Digital
TransformationJourney

Modern organizations undergoing digital transformations re-imagine the way they interact
with their consumers and strive to surpass their expectations. Often, a key element of
digital transformation is a paradigm shift in which organizations migrate from legacy apps
and adopt modern technologies such as the Cloud, Kubernetes, AI, analytics, and
automation to cater to their customers in exciting new ways.

Before embracing new technologies, organizations must adopt a culture of innovation and
experimentation in their software delivery process. The DevOps approach becomes crucial
as organizations rapidly build new services, quickly deliver those services to the market,
and identify what is delivering the most value to their customers.

The DevOps journey differs from one organization to another. Some mature organizations
are experimenting with new paradigms. Others are less mature and are still developing their
DevOps strategy. The journey involves collaboration between various departments such as
security, governance, application, platform, and SREs so it can be difficult to adopt DevOps
successfully. To adopt a DevOps approach, the whole team needs the right set of tool
chains.

Below are some examples of tool chain:

Source Code
Management

Artifacts
Repository Deployment Verification Monitoring

and Logging
Infrastructure
ManagementBuild

GitHub,
GitLab

Jenkinks,
Circle CI,
Bitbucket

Docker HUB,
JFrog Artifactory

Spinnaker,
Argo CD,

OpsMx ISD

OpsMx
Autopilot

Appdynamics,
Dynatrace,
New Relic

Terraform,
Ansible,
Puppet

4

Use DORA Metrics to Track
DevOps Maturity

The DevOps transformation begins by focusing on modernizing your software delivery
process to deploy and deliver software in a fast, safe, reliable, and repeatable way. And in
order to meet those requirements, the applications, operations, and DevOps teams need to
constantly improve. DevOps Research and Assessment (DORA) metrics identify KPIs as well
as benchmarks to gauge the performance of software delivery teams and drive product
improvement.

Organizations must monitor and improve outcome-based DORA metrics:

 Deployment frequency: How often the code is deployed to production

 Lead time for changes: How long does it take to go from code-committed to code-running
in production

 Change failure rate: What percentage of changes release to production cause degraded
service and subsequently require remediation

 Time to restore service: How long does it take to restore the service in the event of an
incident

Therefore, based on the value for each measurement, companies can assess their
maturity.(refer to the below image)

High IT
Performer

On demand
(multiple

deploys per day)

Between once
per week and once

per month

Between once
per month and once

every six month
DEPLOYMENTFREQUENTLY

Figure A- DORA Metrics (Deployment frequency, Lead time to change, Mean time to restore, and Change failure rate) to
track DevOps maturity

Less than
one hour

Between one
week and one

per month

Between one
month and six

months
LEAD TIME FOR CHANGESb

Less than
one hour

Less than
one day

Less than
one daycMEAN TIME TO RESTORE(MTTR)

0-15% 31-45% 16-30%CHANGE FAIL RATE

Medium IT
Performer

Low IT
Performer

5

Why Jenkins Pipeline is Insufficient
to Attain High Software Delivery
Performance
Jenkins is the most popular continuous integration (CI) tool available, and therefore, it is
widely used by almost all software developers across the world. It is so dear to the application
and platform development team that they even extend Jenkins for deployment purposes.
After working in Jenkins for years, developers gain the confidence to set it up for deployment
within hours. However, the problem starts when they try to scale it and use it for production
deployments.

Often, developers face some common challenges while using Jenkins for deployment. Some
of them are plugin nightmares, dependence on scripts to create repeatable pipelines, limited
deployment visibility, and limited knowledge on the impact of a new release.

There are a multitude of plugins available in the Jenkins plugin site based on the application
that has to be deployed (docker-based or Kubernetes-based, etc.) into multi-cloud or hybrid.
So, developers can activate these plugins whenever needed and dismiss them when not
required. This not only saves resources, but also helps the application deployment process
and is versatile. Additionally, plugins also enhance the core Jenkins functionality. As such,
plugins are only meant to extend features beyond the core function of a product. However, if
businesses try to add core functions with the help of plugins, they might obstruct the entire
system. In reality, developers often use multiple plugins to accomplish daily deployment tasks.
For example, pulling code from GitHub requires a plugin. Deploying an application into
Kubernetes, or AWS ECS requires developers to download a separate plugin. Unfortunately, it
is not easy to maintain a lot of plugins on a daily basis especially, when DevOps teams have to
manage 100s of pipelines while deploying multiple micro services per day. Also, developers
need to address these plug-in dependencies as well.

Previously, while creating deployment workflows, stages, and deployment strategies,
developers needed to write multiple scripts and also maintain those scripts. So, manual
coding of environment variables, secrets, dependencies, and release strategies such as
canary and blue-green were ideal as companies would deploy stateless monolith applications
once in two months only. However, this is not the case anymore. Deployments are much more
fast-paced with public cloud and containers. This means developers have to spend more time
on writing scripts for deployment rather than focusing on deployment, which is unproductive.

Plugin Nightmares

Dependence on Scripts to Create Repeatable Pipelines

6

Jenkins provides limited visibility into the build stage only. As a result, the DevOps team does
not get real-time insights whether the deployment is successful or not, and whether the
newly created pods are healthy or not, and so on. This in turn, limits the visibility of managers
and other stakeholders into the deployment pipeline. For instance, managers may not be able
to tell who deployed what and when. Hence, without proper insights into various pipeline
executions, IT organizations cannot collaborate and improvise their CI/CD process.

As such Jenkins does not allow developers to identify the risk of a release prior to
deployment. So, without proper automated gates, engineering managers become gatekeepers
who must go through the software manually to verify associated risks before allowing a
Jenkins deployment pipeline. This is a labor-intensive, error-prone process and is also not
scalable. Moreover, having a limited understanding of the impact of a release or health status
of new deployments increases the risk of production downtime.

Limited Visibility into Deployment Status

Limited Knowledge of the Impact of a New Release

Understandably, Jenkins is the Butler in the continuous integration space. But in case of
continuous deployment, the use of Jenkins can surely result in “technical debt”. While Jenkins
is not the right CD tool, it can be easily integrated with CD tools which developers can
leverage to achieve repeatable deployments and move ahead in their DevOps journey.

OpsMx Intelligent Software Delivery Platform (ISD) is a modern continuous delivery platform
that increases the speed of delivery safely and securely, eliminating the need for human
intervention. ISD comprises two modules, the continuous delivery module and the delivery
intelligence module.

7

Extend Jenkins using OpsMx ISD

Continuous Delivery module The Continuous Delivery module is used to simplify
orchestrating the end-to-end process workflow from code check-in to safe
multi-cloud deployments

Delivery Intelligence module The Delivery Intelligence module provides insightful
data-driven risk verification, policy enforcement, and approvals to ensure quality,
risk-free and compliant software in production.

OpsMx ISD provides pre-built integration with Jenkins and with the artifact repositories.
Whenever a build process is complete and an artifact is sent to an artifact repository such as
JFrog or Docker Hub, ISD will automatically fetch and deploy into relevant targets. Figure B
shows how OpsMx ISD integrates with Jenkins to automate the delivery and deployment
process.

As of today, ISD can easily deploy into Kubernetes, AWS, Azure, Google Cloud, OpenShift, and
Oracle Cloud, without the need to download and maintain plug-ins. Moreover, with ISD,
developers do not need to be concerned with the intricacies of the cloud environment.

8

Figure B- OpsMx ISD integrating with Jenkins to automate software deployment and delivery

9

OpsMx ISD can help DevOps engineers to deploy their monoliths and microservices into
multi-cloud and hybrid cloud on-demand. ISD offers pipeline-as-code, enabling developers to
re-use pipelines to deploy their code into multiple environments. One of the significant
benefits of using ISD is that it allows organizations to scale their software delivery as needed,
thereby deploying an almost unlimited number of changes to multiple targets per day without
any scripting. Figure C represents a deployment pipeline in ISD with various stages to
integrate with other tools and make the delivery seamless. Thus ISD is not only a highly
scalable tool that is suitable for increasing deployment workloads, but it is also easily
extensible in supporting integrations with over 50 of the most common DevOps tools.

Automate Pipelines for Deploying Rapidly and Reliably Without any Scripting

Figure C- OpsMx ISD pipelines for automating deployments

10

OpsMx ISD helps identify and remove bottlenecks in your deployment pipelines through
application and delivery dashboards. It enables developers to monitor applications during and
after deployment to production and empowers them to easily detect issues and request
rollback quickly, thereby avoiding disruptions. Figure D provides a high-level view of pipeline
execution and their success and failure status over time. Project managers can now get a
holistic idea of the pipeline performance and take adequate steps to optimize their continuous
delivery initiative. Lastly, ISD provides audit reports to easily investigate pipeline failures and
policy violations and helps trace who deployed what software and when.

Improve Visibility on Deployments for all Stakeholders

Figure D- Deployment dashboards and insights

11

ISD helps software developers improve customer satisfaction by minimizing errors during the
build, deploy, test, and release processes. ISD's Delivery Intelligence module gathers data
from various CI/CD tools, APM, and log analyzers. It applies supervised and unsupervised
Machine Learning techniques that enable the team to scan and report software risks
throughout the software delivery pipeline. Figure E represents the estimated risk score by ISD
during a canary analysis of a newly deployed software into production. Based on the score,
SREs can roll forward or roll back a software. The correlation of data, metrics, and logs in the
pipeline context provides best-in-class diagnostic capabilities.

Verify Risk of a New Release and Auto-Rollback

Figure E- Risk assessment of a software by analyzing logs and metrics

12

OpsMx ISD allows DevSecOps to define security policies in the software delivery pipeline. As
a result, the security and compliance team can ensure your DevOps process complies with
the organization’s governance and rules while shipping your code, upgrades, and application
to production. Most importantly, compliance managers can create policies to check various
software release parameters and deployment conditions before/during the execution of the
delivery pipeline. Figure F highlights how compliance managers can use ISD to add policy
gates in a pipeline before the product deployment.

Mitigate Security Risks by Defining and Enforcing Policy Gates

Figure F- Enforcement of security and policy gates into automate pipelines

13

ISD allows project managers to configure approval gates easily, choose data sources, and
define them in software delivery pipelines within seconds. ISD can fetch data from DevOps
toolchains such as Git, Jenkins, SonarQube, Jemter, AppScanner, ServiceNow, and many more
and provide consolidated information regarding software release. With the help of relevant
and timely insights, project managers can quickly and safely make informed decisions on
promoting the software across your pipeline from Dev to Testing to the Production stage.
Figure G represents the ISD application dashboard for product managers to highlight pending
approvals, policy violations, and verification failures for faster collaboration in the team.

Improve Collaboration and Aid Faster Decision-Making with Approval Gates

Figure G- Application dashboard representing pending approvals

14

Use Cases of ISD

Symphony addressed the bottlenecks in its CI value stream and modernized software
delivery successfully

Symphony provides a collaboration platform for financial
institutions that are highly regulated and render services
to millions of customers. Complying to these rigorous
standards meant that the company had to maintain the
utmost level of security and regulatory policies.

So, they were looking to deploy a major update to their
platform that would enable a multi-tenant system.
However, their CI value-stream based on Jenkins
created certain bottlenecks which prevented them from
achieving maximum performance.

Symphony leveraged OpsMx ISD to securely modernize
their software delivery within a span of 3 months. By
integrating with Jenkins, ISD helped Symphony’s
DevOps team to deploy software and infrastructure
changes seamlessly into AWS using automated
pipelines.

Cisco deploys multiple changes into cloud perday with OpsMx ISD

Cisco is a world leader in the networking space. They
decided to accelerate their movement to the cloud and
undertook a project to deploy Kubernetes on-prem and
in the cloud (in both AWS and GCP).

In order to improve their competitiveness, Cisco needed
a way to update their software more quickly. So, they
decided to replace their legacy deployment solution and
implement Jenkins CI. However, soon, their IT team
realized that it was not possible to scale their
multi-cloud deployments into hybrid cloud with Jenkins.
That is when the Cisco IT team adopted OpsMx ISD.
Today, more than 2000 developers at Cisco use
thousands of ISD pipelines to deploy changes daily.

1) Deployment time reduced
from days to minutes.

2) 100,000 of updates delivered
into production with a few
errors only.

3) Deployment frequency
increased from monthly
to on-demand.

1) 10X Growth in deployment
frequency, up to 50 updates
per day.

2) 98% reduction in time to
onboard customers
(upto 10 minutes).

3) Reduced cost through
infrastructure deployment
independent of SREs.

Results

Results

15

Delivering new features within a short timespan into the market can be a key
deciding factor for your end customers. Achieving this kind of business velocity
means that you are hugely dependent on your DevOps team. Empowering your
team can foster innovation and ship code faster to production. This, however,
requires you to get out of the extending-Jenkins mindset and adopt a continuous
delivery (CD) tool. A robust CD tool can prevent the CI value-stream from becoming
a bottleneck while completing transformation and migration to cloud-native and
containerized apps. Most importantly, adopting the right CD tool also aids you to
achieve digital transformation at scale and get an edge over your competitors.

3) Deployment frequency
increased from monthly
to on-demand.

Conclusion

Author

Gopinath Rebala is the CTO of
OpsMx, where he heads the
machine learning and data process-
ing architectures of OpsMx Enter-
prise for Spinnaker. Gopi also has a
strong connection with our custom-
ers, leading design and architecture
for strategic implementations. Gopi
is a frequent speaker and well
known leader in continuous delivery
and in the Spinnaker community.

Previously, Gopi was a co-founder
and CTO at N42, which delivered
machine learning tools for improving
reliability for large scale distributed
systems.

Gopinath Rebala
CTO of OpsMx

Ashley heads the product market-
ing team at OpsMx.

He is an award-winning global
product development strategist and
influencer with more than 20 years
of proven ability to recognize and
capitalize on market opportunities
and trends, impact bottom-line
through strategic planning, trend
analysis and forecasting, drive
product roadmap and delivery,
and advance sales execution
and customer adoption.

Ashley Owen
Head of Product Marketing
at OpsMx

opsmx.com

About OpsMx

Founded with the vision of “delivering software without human intervention,” OpsMx enables customers to transform and automate their
software delivery process. OpsMx’s intelligent software delivery platform is an AI/ML-powered software delivery and verification platform
that enables enterprises to accelerate their software delivery, reduce risk, decrease cost, and minimize manual effort. Follow us on Twitter
@Ops_Mx and learn more at www.opsmx.com

