
Advanced 
Deployment 
Strategies
An overview of the most common
software deployment strategies



Introduction

Blue-Green Deployments 

Canary Release 

Dark Launches and Feature Toggles 

Progressive Delivery 

3

6

11

17

22

Table of Contents



3

Introduction  

Today’s high-performance DevOps teams accelerate software delivery and reduce cycle 
times in a safer, low-risk environment.

Continuous Delivery has enabled companies like Google, Netflix, and Amazon to bring on 
new revenue streams faster, achieving the agility needed to respond immediately to 
marketplace opportunities, events, and trends.

Low-Risk Releases are Incremental



24

Continuous Delivery is a continuous-flow approach associated with just-in-time and 
Kanban. The goal is an optimally balanced deployment pipeline with little waste, the lowest 
possible cost, on-time, and defect-free deployment to production.

Traditional, big-bang releases are
highly volatile:

Involve multiple dependencies

Harder to rollback
Large number of changes

Higher risk

Contemporary, incremental releases
are safer:

Faster delivery, faster feedback

Less dependencies
Easier rollouts and rollbacks

Lower risk

Waterfall

Agile Scrum

Analysis Design Build Test

Test

Deploy

DeployA

A A A

A AD

D D DT T T

D DB

B B BD D D

B B

Sprint Sprint Sprint

Feature Feature Feature

Continuous Flow - Value flow without interruption



5

While Continuous Delivery drastically reduces the time between releases, DevOps teams 
must implement advanced deployment strategies to ensure that software deployments can 
be fast, repeatable, safe, and secure.

This ebook provides an overview of the latest deployment strategies and how best to 
implement them in your software delivery practice.

Rolling Blue-Green

Canary

Blue-Green Load Balancer

Load Balancer

Load Balancer

Load Balancer

Load Balancer

Validate

Canary



6

One of the challenges with automating deployments is the cut-over, taking software from 
the final stage of testing to live production. You usually need to do this quickly to minimize 
downtime.

The blue-green deployment strategy requires you have two production environments as 
identical as possible. One of them, let’s say blue, for example, is live.

You do your final testing stage in the green environment as you prepare a new software 
release. When your testing completes, you switch the router so that all incoming requests 
go to the green environment - the blue environment is now idle.

Blue-Green Deployment 

Blue-Green
Minimizes downtime during the “cut-over”

Load Balancer Load Balancer

Old Version Old VersionNew Version

100% Traffic 100% Traffic

New Version

After

Validation

User Traffic



Load balancers and routers help switch users from the blue instance to the green one. 
Control is crucial because it may be necessary to quickly switch them back to the blue 
instance in case of a green instance failure. The implementation assumes that the load 
balancer currently serves traffic to the blue instance (v1.0).

How to Implement

Four Phases of a Blue-Green Deployment

Create and bring the green 
instance online

The first phase is to create the green 
instance and bring it online to run in 
parallel with the blue instance.  Initial 
testing and validation are conducted 
without live traffic to ensure you 
have an environment as identical as 
possible to the blue instance.

Execute the traffic switch

Once the new green instance (v1.1) is 
ready, the traffic is switched from the 
old blue instance (v1.0). Most users 
won’t even notice that they are now 
accessing a newer version of the 
service or application.

Monitoring the environments

DevOps engineers can now run 
smoke tests on the green instance as 
they need to assess if any issues will 
impact the users of the new version.

Rollback or Continue

During the smoke tests, if any bugs are 
detected or a performance issue, the users 
can quickly be rolled back to the stable 
blue version without any substantial 
interruptions. 

 After an initial smoke test, monitoring 
continues as errors might appear after the 
new (green) version goes live. The blue 
version is always on standby, and after an 
appropriate monitoring period, the green 
instance becomes the blue instance for the 
next release. The original blue instance is 
entirely removed or scaled down to save 
costs. 

1 2

3 4

7



8

Seamless customer experience
Users don’t experience any downtime during the cutover.consequat.

Instant rollbacks
You can undo the change without adverse effects.

No upgrade-time schedules for developers
No need to wait for maintenance windows. No weekend work.

Testing parity
The newer versions can be accurately tested in real-world scenarios.

Benefits

The inherent equivalence of the Blue and Green instances and a quick recovery mechanism 
is also perfect for simulating and running disaster recovery practices.

Gone are the days when you had to wait for low-traffic windows to deploy the updates. This 
eliminates the need to maintain downtime schedules. Developers can quickly move their 
updates into production through the Blue-Green strategy as soon as they are ready with 
their code.



9

Managing the cutover

Some sessions may fail during the initial switch to the new environment, or users may 
be forced to log back into the application. This issue can be overcome by using a load 
balancer instead of DNS to manage new traffic from one instance to another.

High infrastructure costs

Organizations that have adopted a Blue-Green strategy need to maintain an 
infrastructure that doubles the size required by their application. If you utilize elastic 
infrastructure, the cost can be absorbed more easily.  Blue-Green deployments may 
be suitable for less hardware-intensive applications.

Code compatibility

Different code versions need to co-exist to support the seamless switching between 
blue and green instances. For example, if a software update requires changes to a 
database, the Blue-Green strategy is challenging to implement because traffic may 
switch back and forth between the blue and green instance. Therefore, you should use 
a database compatible with all software updates.

Challenges

Load Balancer Load Balancer

Old Version Old VersionNew Version

100% Traffic 100% Traffic

New Version

Production

Failure

User Traffic



10

Choose load balancing over DNS switching 

Do not use DNS to switch between servers. It can take browsers a long time to get the 
new IP address. Some of your users may still be served by the old environment.

Instead, use load balancing. Load balancers enable you to set your new servers 
immediately without depending on the DNS mechanism. This way, you can ensure that 
all traffic comes to the new production environment.

Keeping databases in sync

One of the biggest challenges of blue-green deployments is keeping databases in 
sync. Depending on your design, you may be able to feed transactions to both 
instances to keep the blue instance as a backup when the green is live. Or you may be 
able to put the application in read-only mode before cut-over, run it for a while in 
read-only mode, and then switch it to read-write mode. That may be enough to flush 
out many outstanding issues.

Execute a rolling update

A rolling update slowly replaces the old version with the new version. As the new 
version comes up, the old version is scaled down to maintain the overall count of the 
application.

Monitor your environments

It is essential to monitor both the production and non-production environments. Make 
sure your organization sets up an easy way to toggle the alerting between the two 
environments.

The Blue-Green deployment strategy is one of the most widely used deployment 
strategies. It is a great fit when environments are consistent between releases and 
user sessions are reliable even across new releases.

Common Practices



11

Early warning system to potential issues

Canary deployments refer to the practice of releasing a code change to a subset of users 
and then looking at how that code performs relative to the old code that the majority of 
users are still running.  Essentially becoming a “canary in a coal mine” serves as an early 
warning system for potential issues.

This is achieved by setting up Canary servers that run the new code. As new users arrive, a 
subset of them is routed via the load balancer to those canary servers.

You can then use standard performance and monitoring tools to detect whether the new 
code is working correctly. For instance, you might monitor the compute load of the Canary 
servers relative to those servers running the old code. If the load increases substantially, 
you know that’s a potential issue.

Equally, if you see a much higher rate of I/O, that might also indicate a problem. Canary 
Testing is ideal when you wish to test the performance of your backend.

Canary Release

Canary Release
Early warning system to potential issues

Stable Version

1.0 V1.1 1.1
Stable VersionCanary Test



12

Plan and Create
The first step involves creating a new canary 
infrastructure where the latest update is 
deployed. Rolling out canary instances can 
take two forms:

1) You are controlling traffic using load 
balancer rules to the new version.  A small 
amount of traffic is sent to the canary 
instance, while most users continue to use 
the baseline instance.

2) Adding new version instances to the 
existing version.  For example, if ten server 
instances are running version 1, you would 
bring up version 2 instance and add it to the 
server pool sending ~10% of the traffic to the 
new canary instance.

Analyze
Once traffic is diverted to the canary 
instance, the team collects data: metrics, 
logs, information from network traffic 
monitors, results from synthetic 
transaction monitors – anything that helps 
determine whether the new canary 
instance is operating as it should. The 
team then analyzes this data, comparing it 
to the baseline version.

Roll
After the canary analysis is completed, 
the team decides whether to move ahead 
with the release and roll it out for the rest 
of the users or roll back to the previous 
baseline state.

1 2

3

How to Implement

In a simple structure, the canary deployment has three stages.

Stable Code Version Stable Version Stable VersionUpdate Version Update Version

100%
Traffic

90%
Traffic

10% Traffic 100% Traffic

1.0 1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.0

1.0

1.0 1.0

1.0 1.0

1.0 1.0

1.0 1.0

1.0 1.0

1.0 1.0

1.0 1.01.1 1.1 1.1

1.1 1.1

1.1 1.1

1.1 1.1

Canary Testing Canary Testing

Stage 1 Stage 2

User Traffic User Traffic User Traffic

Load Balancer Load Balancer Load Balancer



14

Zero-downtime releases
Switch users from one release to another instantaneously.

Rollbacks are easy
Just stop routing users to the bad version, and you can debug and break/fix at your 
leisure.

Use for A/B testing

A low-risk way to test system capacity

Benefits Zero-downtime Releases

Rollbacks are easy

Use for A/B testing

A low-risk way to test system capacity

Lower infrastructure costs

By routing some users to the new version and some to the old version, companies can 
measure and compare different feature versions and kill the new features if not 
enough people use them. A/B testing can also measure actual revenue generated or 
can be rolled back if the more recent version generates lower revenue. Just route a 
small representative sample of users to the new version.

Gradually ramp up the load by slowly routing more and more users to the application 
while measuring application response time metrics like CPU usage, I/O, and memory 
usage and watching for exceptions in logs. This is a relatively low-risk way to test 
system capacity in your production environment.

Lower infrastructure costs
Unlike the Blue-green strategy, where you need nearly an identical copy of the 
infrastructure, canary releases require a small infrastructure initially to deploy and test 
that your code changes are running fine.



15

It can be time-consuming and 
error-prone without automation

On-Premise/thick client
applications are challenging
to update

Database upgrades can be tricky

It can be time-consuming and error-prone without automation

Today, many companies execute the analysis phase of canary deployments in a siloed 
and non-integrated fashion. You need an automated and integrated toolchain.

If a DevOps engineer is assigned to manually collect monitoring data and logs from the 
canary version and analyze them. It will not be scalable for rapid deployments. 
Decisions on whether to roll back or roll forward will be delayed and may be based on 
incorrect data.

On-Premise/thick client applications are challenging to update

It becomes challenging for a business to perform a Canary deployment in an 
environment where the application is installed on personal devices. One of the ways 
around this can be setting up an auto-update environment for the end-users.

Database upgrades can be tricky

Databases (or any shared resource) need to work with all versions of the application 
you want to have in production. You might need to create a very complex deployment 
process if you try to modify the application to interact with the database or change 
the database schema.

To perform the canary, first, change the database’s schema to support two or more 
instances of the application. This will allow the old and new versions of the application 
to run simultaneously. Once the new architecture of the database is in place, the latest 
version can be deployed and switched over.

Challenges



16

Conclusion

The canary deployment strategy is widely used because it lowers the risk of moving 
changes into production while reducing the need for additional infrastructure. 
Organizations using canary can test the new release in a live production environment 
while not simultaneously exposing all users to the latest release.

Compare canary against a baseline, not against production

You might be tempted to compare the canary deployment against your current 
production deployment. Instead, always compare the canary against an equivalent 
baseline deployed.

The baseline uses the same version and configuration that is currently running in 
production but is otherwise identical to the canary:
    Same time of deployment
    Same size of deployment
    Same type and amount of traffic

In this way, you control the version and configuration only, and you reduce factors that 
could affect the analysis, like the cache warmup time, the heap size, and so on.

Ensure to give your Canaries enough time

Slower rollouts mean better data but reduced velocity. It’s a balancing act, but 
canaries deployed for critical services should live longer. Longer canary durations will 
help detect issues. For highly critical services, recommendations are for 4 to 24 hours.

Time canary deploys with your traffic cycles

If you see regular workload peaks and troughs, time your canary period to begin 
before peak traffic and cover a portion of the peak traffic period.

Your canary process should cover 5% to 10% of your service’s workload

For example, if a service tier typically comprises  100 instances, you should canary on 
5 to 10 of those instances. A canary covering only 1% to 2% of the workload is more 
likely to miss or minimize some important cases; a canary covering more than 10% of 
the workload may have too much impact if it doesn’t work as expected.

Common Practices



17

A safe way to gauge interest in a new feature

Dark Launching is similar to Canary deployments. However, the difference here is that you 
are looking to assess users’ responses to new features in your frontend rather than testing 
the performance of the backend.

The concept is that rather than launch a new feature for all users, you instead release it to a 
small set of users.

Usually, these users aren’t aware they are being used as guinea pigs for the new feature, 
and often you don’t even highlight the new feature to them, hence the term “Dark” 
launching.

Dark Launches & Feature Toggles

Dark Launches and Feature Toggles
A safe way to gauge interest in a new feature

Production
V1 V2 V3

Release

Development

Feature 1

Feature 2

Feature 3

User group 1

User group 2



18

ON

New Feature

Userbase 1

Userbase 2

Userbase 3ON

OFF

You can use UX instrumentation to monitor if the feature improves the user experience or 
increases your revenue (e.g., the new feature may encourage them to spend longer using 
your app and thus consume more ads or make more in-app purchases).

This process is precisely what any product manager is doing when assessing how well an 
app performs. The only difference is that you are now looking at the performance of a 
single new feature.

Use feature toggles to incrementally roll out a new feature to more and more users and 
assess performance.

A feature toggle is a technique that attempts to provide an alternative to maintaining 
multiple source code branches. Feature toggles hide, enable or disable the feature during 
run time. A feature can be tested even before it is completed and ready for release.

Dark Launching enables product teams to roll back features that are not performing well or 
fully launch features that users love.

How to Implement



19

Empower DevOps team to safely experiment

Dark launching empowers DevOps teams to safely experiment with new features and 
new software versions at a lower risk. This creates faster feedback cycles so that 
product teams can adjust features and software versions to the needs and wants of 
the users and the markets they serve faster than their competitors.

Gauge interest in new features

With dark launches and feature toggles, product teams can gauge interest and 
adoption of new features. They can make rollout decisions based on how the current 
subset of users accept the new feature and determine how it will help with the 
success of the product and company.

Allows you to deploy a new feature in a controlled way

Like canary releases, dark launching and feature toggles will enable you to roll out new 
features in a controlled manner. However, dark launches and feature toggles do not 
require you to run multiple versions of an application in an environment simultaneously, 
which you must do for a canary release.

Reduces pre-production testing

Organizations can save time and money since features can safely be tested in 
production and by actual users instead of QA engineers. Feedback would be directly 
from the users in a real-world production environment.

Benefits



20

It might be challenging to adopt

Dark launches and feature toggles require you to change the code in the application 
you want to deploy. Development teams will need to design, code, build, maintain, and 
deploy this support. Implementing this support for legacy applications with large 
codebases could be problematic.

Feature Toggles could lead to more technical debt

Feature toggles require code updates to implement. Typically these toggles are 
temporary software updates to support the new feature. Once the feature has been 
tested and accepted, the feature toggle is no longer required. If you don’t have a 
process to maintain, update, and remove old temporary feature toggles, technical debt 
will increase.

May make the system harder to understand and less secure

As more feature toggles are added, the code can become more fragile and brittle, 
harder to understand and maintain, and less secure. Feature toggling is about your 
software being able to choose between two or more execution paths based on a 
toggle configuration. This increases the complexity of the code and makes it harder to 
test, support, and secure.

Challenges



21

Encapsulate feature toggles with the business logic it supports

As a general rule of thumb, you should try to encapsulate your feature toggle with its 
supported business logic. This will help avoid having other areas of your codebase be 
aware of the context needed for toggling the feature. Sometimes, this is impossible as 
the core business logic might be broken up into several different services. If that is the 
case, the toggle should be placed closest to the service call, passing a parameter to 
the target services.

Establish a baseline of service levels to monitor and test for success

Ensure that you are setting service-level objects and determining service level 
indicators to track the service or feature impacted performance. It’s critical to have the 
tools and infrastructure to assess the system’s performance, monitor for unexpected 
responses to client requests, and compare any system deviation to a baseline.

Create a retirement plan and process for feature toggles 

Development and delivery teams are asked to add toggles for various reasons but 
aren’t often asked to remove a toggle after it has served its purpose. Teams need to 
put processes in place to ensure that toggles are eventually retired. Whether adding a 
toggle retirement task to the team’s work backlog or creating an expiration notification 
event when a toggle’s expiration date has passed, you should have an automated 
system that manages the lifecycle of a feature toggle.

Common Practices



22

Feature
1

Canary Group

Regional Group

Global Group

APM

Feature
2

ON

ON

ON OFF

OFF

OFF

Control which users see which feature, and when

Progressive Delivery is not a deployment strategy, but we have chosen to include an 
overview in this ebook because it is a new DevOps practice that leverages the deployment 
and rollout strategies previously discussed.

Progressive Delivery extends Continuous Delivery by enabling more control over feature 
delivery. The process deploys features to a subset of users, then evaluates key metrics 
before rolling out to more users or rolling back if there are issues. Progressive delivery 
introduces two core tenets, release progressions and progressive delegation.

Release Progressions uses a variety of deployment strategies to deploy features to a subset 
of users at a pace sustainable for the business. This facilitates the creation of checkpoints 
for testing, experimenting, and gathering user feedback.

Progressive delegation refers to progressively delegating the control of a feature to the 
owner who is most closely responsible for the outcome. As the feature transitions from 
development, test, and production, the ownership changes from engineering to a role closer 
to the end-user, usually the product manager.

Progressive Delivery

Progressive Delivery
Control which users see which feature, and when



23

Test
Pilot

Customers

Light 
Load

Regions

Medium
Load

Regions

High
Load

Regions

Canary

Incremental delivery and feature management are the key enablers of Progressive Delivery. 
Both of these together provide fine-grain user exposure control to a new feature. This 
exposure is referred to as the “blast radius.” By limiting the blast radius, you restrict the set 
of users exposed to a possible bad outcome.

The decision to proceed or fall back is based on testing criteria and careful monitoring. You 
might use canary analysis, A/B testing, observability, or other methods to meet the service 
objectives and success criteria.

For example, using a release progression with canary, you can select a small blast radius, 
1-5% of the entire user population, and then gradually increase to 10%, 20%..etc., based on 
the feature performance and user feedback in each stage. If there are critical issues, you 
can either turn that feature off or roll back to the baseline version.

The progressive delegation lifecycle would start in pre-production environments. 
Developers and test engineers would own the feature and associated toggle support, 
ensuring that it performs to its expected specifications. Once the feature goes live, 
ownership transitions to the product manager to review and determine if the feature is 
delivering the expected outcomes.

Once the feature is deployed to all users, the management of the feature returns to 
development so they can remove the feature toggle and ensure the new feature is part of 
the new baseline version.

How It Works



24

Release features faster and with control

Progressive delivery helps DevOps teams deploy features faster to production. It 
provides safeguards and controls to “Go Live” incrementally and rollout features at a 
pace that supports the business. Development teams can work independently, 
delivering different features and different release frequencies.

Lower deployment risks and improves quality

Limits blast radius and users affected if features have problems or don’t work as 
expected. Only a small subset of users are impacted by limiting the blast radius. 
Developers get faster feedback and reduce break/fix cycle times, improving the 
quality of the features as they get deployed across the user community.

Faster decision-making and better collaboration

With progressive delegation, real-time feedback and control of a feature are routed to 
the team most responsible for the outcome. This improves both technical and 
business outcomes.

Reduce pre-production testing

Organizations can save time and money since features can safely be tested in 
production and by actual users instead of QA engineers. Feedback would be directly 
from the users in a real-world production environment.

Benefits



25

Moving fast without breaking things

Testing in production poses real risks. You cannot rely on automated testing to catch 
every issue before it hits production. Still, testing in production can be complex, 
degrade the user experience, and slow down your development team. It can take a 
long time to be confident in your release. You might have a new team of developers 
that are not that familiar with the application. Perhaps traffic is slow, or there are many 
features and code paths to exercise. Aligning the product team to a fast release 
cadence may force a time constraint, and impatience will lead to poor quality and 
broken glass.

Becoming complacent and deferring to the production environment

Once Progressive Delivery has been adopted, it’s easy for teams to get lazy and wait 
until the feature is deployed into production to do all of their testing. Fixing a defect is 
cheaper if found on the developer’s desktop or during integration testing in a 
pre-production environment. Progressive delivery enables you to get additional 
validation, but it should not be an excuse to cut corners.

Adds complexity to your release process and production environments

Progressive Delivery is complex and adds another practice layer to Continuous 
Delivery. You will have multiple application versions running simultaneously - 
potentially for hours or even days. Your code and shared resources need to be forward 
and backward compatible. If you don’t have the basic CI/CD fundamentals down, it 
could be a recipe for disaster. A strong Continuous Delivery practice and a tightly 
integrated DevOps toolchain are required.

Challenges



26

Collaborate when defining release progressions

When you are in the planning phase of developing your Progressive Delivery practice, 
make sure it’s a collaborative exercise with the product team. Development, product 
management, and marketing should be involved in defining how to expose a new 
feature to the users. You want to make sure everyone is clear about why you are 
releasing the feature and what a positive or negative outcome is.

Automate your workflows for faster decision-making during deployment

The key to progressive delivery is quickly making data-driven decisions about whether 
to roll back or roll forward a feature. The data to drive that decision is typically 
dispersed across many different tools within the DevOps toolchain. It might take hours 
to approve or reject a canary. That is why it’s widespread for organizations and teams 
to use a solution that automates workflows, securely deploys codes while meeting all 
compliance requirements, and provides an automated risk assessment.

Eliminate human intervention as much as possible

Implementing a progressive delivery practice is a relatively large undertaking. The 
main principles of Continuous Delivery are a prerequisite. Integrated toolchains and 
automation lay the foundation for the incremental delivery of features. Leveraging 
orchestration tools that can aggregate data-driven analysis and approval cycles are 
required to scale delivery at the pace of the business.

Common Practices



Duration: 10 mins

Duration: 10 mins

Duration: 10 mins

Duration: 10 mins

Duration: 5 mins

Duration: 5 mins

Provision Infrastructure

Setup Deployments

Automate Compliance

Integrate Tools

Setup Pipeline

Actionable Insights

-
plates. Automate your pipelines; no scripts re-
quired!

Leverage ready-to-use support for on-prem, 
hybrid, and multi-cloud deployments. Utilize 
canary, blue-green, and highlander strategies 
with automated rollbacks. Use our unique archi-
tecture to deploy across security zones.

Automate your compliance checks out of the 
box with standard static and dynamic policies. 

Integrate all of your required DevOps tools like 
Jenkins, Artifactory, and Splunk through our 
self-service integrations module. 

Set up control gates and assign ownership at 
each pipeline stage. Automated dashboards 
ensure nothing is pending on a queue for too 
long.

Quickly and safely make informed decisions 
with DORA metrics, real-time insights, and 
audit reports. AI-driven risk assessment auto-
mates the pre-check of software releases at 
every stage. 

STEP -1

STEP -5

STEP -3

STEP -2

STEP -4

STEP -6

With OpsMx you can set up
a production ready pipeline

in under 60 minutes



opsmx.com

About OpsMx

Founded with the vision of “delivering software without human intervention,” OpsMx enables customers to transform and automate their 
software delivery process. OpsMx’s intelligent software delivery platform is an AI/ML-powered software delivery and verification platform  
that enables enterprises to accelerate their software delivery, reduce risk, decrease cost, and minimize manual effort. Follow us on Twitter 
@Ops_Mx and learn more at www.opsmx.com


