
E B O O K

A Guide to Achieving

Secure Software
Delivery

E B O O K

Introduction to DevSecOps 03

05Understanding the Landscape of Secure Software Delivery

Table Of Contents

06Stages within the Software Supply Chain and Vulnerabilities in Continuous Delivery

08Key Principles of Secure Software Delivery

25Conclusion

25About OpsMx

08
11
15

19
23

Why Software Attacks are Increasing and Real-Life Examples 03

05DevOps is not Optimized for Security

Table Of Contents

06Attack Surface Vectors and Vulnerabilities in Continuous Delivery

04Challenges Enterprises are Facing in Addressing this Problem

08Key Principles of Secure Software Delivery

25Conclusion

26About OpsMx

08Principle 1: Automating Risk Prevention

07Integrated DevSecOps: Extending Security from Code to Cloud

11Principle 2: Ensuring Compliance Throughout the Pipeline
15Principle 3: Establishing End-to-End Traceability

19Principle 4: Deployment Verification and Integrity
23Principle 5: Runtime Monitoring and Security

Attack Name Description Root Cause Business Impact

SolarWinds Hackers compromised SolarWinds' IT
monitoring system, Orion, and
delivered backdoor malware in an
Orion software update. The malware
could access system files and work
among SolarWinds’ legitimate
activities, going undetected even by
antivirus software. Approximately
18,000 customers installed the
malicious Orion update, allowing
hackers to unleash even more
malware on their systems.

Affected organizations include
Cisco, Deloitte, Intel, Microsoft,
FireEye, and various government
departments, including Homeland
Security.

Compromised software
update

Kaseya REvil hackers exploited a vulnerability
in Kaseya's VSA software to carry out
ransomware attacks on multiple
managed service providers (MSPs)
and their customers. They infiltrated
systems via a fake update. The
attack affected around 60 of
Kaseya's customers and a further
1,500 businesses.

Multiple managed service
providers and their customers
were affected.

Exploited vulnerability in
VSA software

Codecov Hackers gained unauthorized access
to Codecov's Bash Uploader script by
altering it due to an error in the image
creation process. They gleaned
customers’ private credentials, keys,
and tokens for two months before
detection.

Customers' private credentials,
keys, and tokens were compro-
mised.

Unauthorized access due
to an error in image
creation process

Log4j The Log4Shell vulnerability in Log4j
meant attackers could break into
systems, steal data, uncover logins
and passwords, and unleash
additional malicious software. Log4j
is used by many individuals and
organizations, putting an extraordi-
nary amount of users and businesses
at risk of attack.

Affected organizations include
Belgium’s Ministry of Defence and
Vietnam-based crypto platform
Onus.

Log4Shell vulnerability

Why Software Attacks are Increasing and
Real-Life Examples
In today's software delivery landscape, the stakes have never been higher. Take, for example,
the SolarWinds attack, a devastating breach that exploited vulnerabilities in the software delivery process, result-
ing in severe consequences for the company and its customers. This attack exposed the urgent need for secure
software delivery. Other notable attacks include the Kaseya ransomware attack, the Codecov unauthorized access
incident, and the Log4j vulnerability. These real-life examples illustrate the potential impact of software supply
chain attacks and highlight the criticality of implementing robust security measures.

Examples of attacks include:

Table 1: Software Supply Chain attack examples

P/3

https://www.cisecurity.org/solarwinds

Challenges Enterprises are Facing in Addressing this Problem

P/4

Despite DevSecOps gaining traction as a practice, the path to its successful implementation remains fraught
with complexities. It's important to note that DevSecOps is not a silver bullet. While it promises to integrate
security into the software supply chain, ensuring that applications are secure is challenging, especially in the
domain of software delivery.

To underscore the gravity of the situation, let's enumerate the top five challenges that organizations face in
achieving secure software delivery:

Despite these challenges, it is critical to understand the undeniable importance of secure software delivery. It
forms the bedrock of trust between businesses and their customers, safeguarding sensitive data and preserv-
ing the integrity of digital services. In an era where software vulnerabilities can lead to severe financial and
reputational losses, secure software delivery is not merely a best practice; it's an absolute necessity.

There are many challenges in implementing secure software delivery, but they are not insurmountable. As we
delve further into this guide, we will explore the principles, strategies, and best practices to help your organiza-
tion achieve secure, continuous software delivery, building a robust defense against the cyber threats of today
and tomorrow.

As digital innovation accelerates and the role of Artificial Intelligence (AI) expands, the risk of software supply
chain attacks intensifies, presenting a significant challenge for organizations of all sizes. According to Gartner,
by 2025, it is projected that 45% of organizations worldwide will have fallen victim to such attacks—a stagger-
ing three-fold increase from 2021.

Fragmented Data. Security data is fragmented across teams and tools that don’t work together. It is
almost impossible to get a holistic view of the security posture of an application or understand the security
impacts of a release.

Difficult to Make Good Security Decisions. When all of the relevant data is available, it is almost impossible
for any person to evaluate the risks of a new release or to know if some critical step has been missed.
There are too many attack vectors and unpredictable dependencies for humans to manage.

Manual Approvals and Policy Enforcement. “Pushing Left” application security moves responsibility for
many security policies to the world’s 200M+ developers. Organizations often add manual review and
approval steps to make sure developers did what they are supposed to do. The volume of such checks at
scale can quickly over any operations team.

Manual Audits. Answering an audit or compliance request too often requires a manual review of system
logs if they are still available.

Vulnerability Tracing and Response. Freezing code doesn’t freeze the constantly changing vulnerability
landscape. When a new vulnerability is discovered, there is no good way to know where that vulnerability
is currently running in the production environment.

https://www.gartner.com/en/newsroom/press-releases/2022-03-07-gartner-identifies-top-security-
and-risk-management-trends-for-2022

Rapid Pace and Frequent Changes: CD environments are designed to deliver software updates quickly and
frequently. This fast-paced nature can lead to oversight or neglect of security measures. The pressure to
release new features or updates promptly may result in developers bypassing certain security checks or
not thoroughly vetting changes, inadvertently introducing vulnerabilities.

Automation and Orchestration: CD relies heavily on automation and orchestration tools to streamline the
software delivery process. While automation brings efficiency, it can also introduce security risks if not
properly implemented. Attackers may attempt to exploit vulnerabilities in the automation scripts or manipulate
the orchestrated processes to gain unauthorized access or introduce malicious code.

Integration of Third-Party Components: CD environments often incorporate third-party components, such
as libraries, frameworks, and plugins, to accelerate development. However, these components may contain
vulnerabilities that attackers can exploit. The challenge lies in managing and securing these dependencies,
ensuring they are up-to-date and free from known vulnerabilities.

Lack of Proper Security Measures: Historically, CD environments have focused primarily on speed and
quality, with security being an afterthought. Security teams often operated separately from the CD pipeline,
leading to delayed security checks or insufficient security measures. This disconnect creates opportunities
for attackers to exploit undetected vulnerabilities until later stages or even production deployments.

Access to Sensitive Data and Systems: The CD environment typically has access to sensitive data, including
source code, credentials, and deployment configurations. Attackers target these environments to gain unau-
thorized access to valuable assets or leverage compromised CD processes to propagate attacks to produc-
tion systems. A successful breach in the CD environment can have far-reaching consequences across the
entire software supply chain.

DevOps is not Optimized for Security
DevOps, with its focus on speed and continuous delivery, has revolutionized software development and deploy-
ment. However, the inherent nature of DevOps practices did not initially prioritize security. Instead, security was
often an afterthought or a bolt-on issue that emerged as organizations realized the importance of protecting
their software delivery pipelines.

P/5

The Continuous Delivery (CD) environment, designed for rapid and frequent updates, presents an attractive
target for security attacks. The CD environment is particularly vulnerable to security risks. Here are some
reasons why the CD environment is particularly ripe for security attacks and vulnerability issues:

Organizations must recognize the significance of secure software delivery and proactively protect their CD
pipelines. By implementing robust security measures, they can significantly reduce the likelihood of security
breaches, protect sensitive data, and uphold the trust and confidence of their customers. Embracing a securi-
ty-first mindset and integrating security practices into every step of the software delivery lifecycle will pave the
way for a more resilient and secure software ecosystem.

Image 1 - Software Supply Chain stages and security risks

Reference
Workflow

Submit
Bad Code

Compromise
Source Control

Compromise
Build System

Compromise Package
Manager / Artifact

Signing

Alter Build
Pipeline

Bypass CI/CD,
Inject Bad

Artifact

Abuse
Privileges

Developer Source

Attacks are not restricted to code alone

Build Artifacts Deploy Operate

P/6

Injecting malicious code into
the build process or software
artifacts.

Build, Deployment The Equifax data breach,
where attackers injected
malicious code into an
Apache Struts library during
the build process.

The software supply chain supporting CI/CD consists of several stages, each playing a crucial role in the deliv-
ery process. These stages include code develop, commit, build, test, artifact management, deployment, and
monitoring. While CI/CD initially focused on speed and quality, security was often overlooked as security teams
operated outside the initial CI/CD environment. However, the dynamic and rapid nature of the CD environment
exposes it to various security risks and makes it an attractive target for attackers.

Specific attack vectors and vulnerabilities can be exploited in each stage of the CD process. The post-build
stage, in particular, becomes a focal point for Secure Software Delivery. Attack vectors within this stage include
code injection, unauthorized access, tampering, insecure dependencies, and insider threats. These vectors can
lead to compromised software artifacts, unauthorized access to Build servers or deployment environments, or
the introduction of malicious code. Organizations must know these risks and take appropriate measures to
secure their software supply chain.

Attack Surface Vectors and Vulnerabilities in Continuous Delivery

Trick User to Use
Bad ResourceInject Bad/

Vulnerable
Dependency

Dependencies

Attack Vector Description Stage(s) of
Occurrence Past Examples

Code Injection

While the concept of "Shift Left" has gained popularity in DevSecOps, it is essential to recognize that secure
software delivery goes beyond just shifting security practices to the left. The last mile, from the post-build
process to production, is an area that is often exposed and particularly vulnerable to security risks. To achieve a
truly secure software delivery environment, organizations must adopt an integrated approach that extends
security practices from code to cloud.

DevSecOps is not just about introducing security checks earlier in the software development lifecycle; it's about
seamlessly integrating security throughout the entire delivery pipeline. By integrating security practices into
each stage of the software delivery process, from code creation to deployment and beyond, organizations can
establish a robust security posture that protects their software assets and data.

In the following sections of this eBook, we will explore key principles and best practices for secure software
delivery. These principles encompass automating risk prevention, ensuring compliance throughout the pipeline,
establishing end-to-end traceability, verifying deployment integrity, and implementing runtime monitoring and
security. By adopting these principles and leveraging secure software delivery solutions, organizations can build
a secure and resilient software delivery process that safeguards their applications, data, and reputation.

Integrated DevSecOps: Extending Security from Code to Cloud

Emerging standards, such as NIST SP 800-218 and NIST SP 800-53, provide guidelines and controls for secur-
ing the software supply chain. These standards focus on supply chain risk management, ensuring software
artifacts' integrity, confidentiality, and availability. Implementing these controls helps organizations establish a
more secure and compliant software delivery process.

The Software Bill of Materials (SBOM) and the Supply Chain Levels for Software Artifacts (SLSA) model are
gaining traction as mechanisms for enhancing supply chain security. The SBOM provides a complete inventory
of software components used in an application, enabling organizations to track and manage dependencies
effectively, but more is needed. The SBOM only captures software components, and security risks don’t stop
once the software is built. The SLSA model defines different levels of assurance for software artifacts, guiding
organizations in evaluating and assessing the security of their supply chain.

Image 2 - Common attack vectors in the post-build stage

Gaining unauthorized access
to software artifacts, build
servers, or deployment
environments.

Artifact Management, Deploy-
ment

In the Capital One breach, an
attacker gained unauthorized
access to an S3 bucket
containing customer data.

Unauthorized Access

P/7

Modifying software artifacts,
configurations, or scripts
during the build or deploy-
ment process.

Build, Deployment The Magecart attacks, where
attackers tampered with
JavaScript files during the build
process to inject credit card
skimmers on e-commerce
websites.

Tampering

Exploiting vulnerabilities in
third-party libraries or
dependencies used in the
software.

Build, Deployment The Heartbleed vulnerability
affected OpenSSL, a
widely-used dependency in
many software applications.

Insecure Dependencies

Malicious insiders compromise
the integrity or confidentiality
of software artifacts.

Artifact Management, Deploy-
ment

The Edward Snowden incident,
where a contractor leaked
classified documents by
accessing and copying them
from the deployment environ-
ment.

Insider Threats

1. Code vulnerabilities: Automated code analysis detects common security flaws like injection
attacks, cross-site scripting (XSS), and authentication bypasses.

2. Insecure dependencies: Vulnerability scanning tools identify known vulnerabilities in
third-party libraries and components, enabling organizations to address them promptly.

3. Configuration weaknesses: Automated assessments check for misconfigurations in the
application's environment, preventing potential security gaps.

4. Compliance violations: Organizations can ensure compliance with industry regulations and
internal security policies by enforcing security checks.

5. Insider threats: Automated risk prevention systems monitor suspicious activities, helping
detect and mitigate insider threats.

Key Principles of Secure Software Delivery

P/8

Principle 1: Automating Risk Prevention
Automating risk prevention is a fundamental principle of secure software delivery. Organizations can proactively
identify and mitigate security risks by leveraging automation, ensuring that vulnerabilities and potential threats are
addressed early in the software development lifecycle. In this section, we will explore the concept of automated
risk prevention, the security risks in deployments, and the advantages it brings to the software delivery process.

Understanding the Security Risks in Deployments
Deployments are a critical stage in the software delivery pipeline and, unfortunately, an area where security risks
can emerge. Attackers may exploit vulnerabilities, tamper with software artifacts, or gain unauthorized access
during deployment. These risks pose significant threats to the software's integrity, confidentiality, and availability.
Drawing on the prior section, we have identified attack vectors such as code injection, unauthorized access,
tampering, insecure dependencies, and insider threats in the post-build and deployment stages.

Automated risk prevention in the post-build stage focuses on mitigating security risks and vulnerabilities that
emerge during software delivery. Organizations can proactively identify and address potential threats by leverag-
ing automated tools and practices before deploying the software.

For example, consider a scenario where a company is developing a web application. In the traditional approach,
after the code is built, a manual code review is conducted to identify security flaws. However, this manual process
is time-consuming and prone to human error, leading to potential vulnerabilities being overlooked.

With automated risk prevention, security tools are integrated into the CI/CD pipeline. These tools automatically
analyze the application's code, dependencies, and configurations, flagging potential security issues such as code
vulnerabilities, insecure dependencies, or misconfigurations. The system can enforce secure coding practices,
conduct security assessments, and provide real-time alerts on identified risks.

By automating risk prevention post-build, organizations can mitigate various types of risks, including:

By integrating automated risk prevention in the post-build stage, organizations can significantly enhance the
security of their software delivery process. They can identify and address vulnerabilities early on, reducing the
chances of breaches and ensuring the deployment of more secure and resilient applications.

To effectively implement automated risk prevention, it is crucial to aggregate security and CI/CD tools and data
from the existing DevOps toolchain. This integration enables the aggregation and automation of risk prevention
measures across the stages of the software delivery lifecycle, ensuring comprehensive security coverage through-
out the software delivery pipeline.

1. Code Commit Stage:
A. Integration with version control systems, such as Git, to enforce branch protection

mechanisms and secure coding practices.
B. Integration with code analysis tools to perform automated security scans and identi-

fy vulnerabilities at the earliest stage.
C. Identify hardcoded secrets and vulnerabilities

1. Build and Continuous Integration (CI) Stage:
A. Integration with CI/CD tools, such as Jenkins or GitLab CI/CD, to incorporate security

checks into the build process.
B. Implementation of secure code scanning tools to detect and flag potential security

issues during the build stage.
C. Integration with vulnerability management tools to ensure vulnerabilities are identi-

fied and prioritized for remediation.

Image 2: Application security details

A Secure Software Delivery (SSD) automation solution acts as a central hub or control plane that integrates with
various DevOps and security tools and processes, allowing for the seamless flow of security-related information
and actions. It provides a unified view of the entire software delivery process, from code commit to deployment,
and enables organizations to enforce consistent security practices across the different stages.

Here's how an SSD automation solution can integrate with a DevOps toolchain to aggregate and automate risk
prevention across the stages of SSD:

P/9

2.

1. Artifact Repository and Deployment Stage:
A. Integration with artifact repositories, such as Nexus or JFrog Artifactory, to securely

store and manage deployment artifacts.
B. Implementation of mechanisms to verify the integrity and authenticity of deployment

artifacts, including image integrity and signature verification.
C. Composition analysis and known vulnerabilities checks for binaries/libraries in

artifacts (Containers, VM Images).
D. Automation of deployment audit records generation and storage for traceability and

compliance purposes.

3.

Early Detection and Mitigation: Automation enables the identification of security risks at an early stage,
often before the software is deployed to production. This early detection allows organizations to promptly
mitigate risks, reducing the window of vulnerability and preventing potential breaches.

Consistency and Standardization: Automation ensures that security measures, such as secure coding prac-
tices, vulnerability scanning, and compliance checks, are consistently applied across the entire deployment
process. This standardization reduces the chances of human error and ensures that security controls are in
place consistently.

Scalability and Efficiency: Manual risk prevention can be time-consuming and error-prone, especially as
software deployments become more frequent and complex. Automation allows for scalability and efficien-
cy, enabling organizations to handle a high volume of deployments without compromising security.

Integration with DevOps Practices: Automated risk prevention aligns with DevOps principles, integrating
security seamlessly into the software delivery pipeline. It enables the implementation of security measures
as code, incorporating security checks and controls into the CI/CD process.

Rapid Response to Emerging Threats: Automated risk prevention tools can quickly adapt to emerging threats
and vulnerabilities. By leveraging threat intelligence and automated security updates, organizations can stay
ahead of potential risks and apply timely remediation measures.

Advantages and Benefits of Automating Risk Prevention

Enforce branch protection mechanisms
and promote secure coding practices to
prevent unauthorized changes

Ensures that only authorized changes are
merged into production branches,
reducing the risk of introducing vulnera-
bilities and unauthorized code

Best Practice Description Benefit

Implement Branch Protection and
Secure Coding Practices

Implement automated security assess-
ments to continuously scan the codebase,
dependencies, and infrastructure

Early detection and mitigation of security
risks, reducing the window of vulnerability
and preventing potential breaches

Conduct Proper Security Assessments
and Vulnerability Management

Establish company-specific policies for
addressing vulnerable dependencies and
automate their identification

Timely remediation of vulnerabilities in
dependencies, reducing the risk of using
insecure or outdated components,
libraries, or frameworks

Address Vulnerable Dependencies based
on Company Specific Policies

Best Practices for Automating Risk Prevention

By integrating an SSD automation solution with the existing DevOps toolchain, organizations can achieve a
centralized risk prevention solution that can enforce consistent security practices and policies across all stages
of the software delivery lifecycle.

P/10

Understanding Compliance Risks in Software Delivery
The software delivery pipeline involves multiple stages, from development to deployment, and each stage intro-
duces potential compliance risks. Non-compliance can result in severe consequences, such as regulatory penal-
ties, reputational damage, and legal liabilities. Therefore, it is crucial for organizations to identify and address
compliance risks throughout the pipeline, including security controls, data protection, and adherence to relevant
industry standards and regulations.

Table 3: Best practices for automating risk prevention

P/11

Integrate automated code scanning tools
to detect and flag potential security issues
during build and deployment

Early identification and prevention of
security vulnerabilities, ensuring the
software is free from common security
weaknesses

Ensure Secure Code Scanning and
Library Change Detection

Implement mechanisms to securely store
and generate audit records of deployment
activities

Enhanced traceability and accountability
in the software delivery process,
facilitating compliance audits and incident
investigations

Securely Store and Generate
Deployment Audit Records

By following these best practices, organizations can effectively automate risk prevention throughout the software
delivery pipeline. Automated tools and processes enable early detection and mitigation of security risks, enforce
secure coding practices, address vulnerabilities, and enhance the overall security posture of the software being
delivered.

In the following sections, we will explore the remaining key principles of secure software delivery, including
ensuring compliance throughout the pipeline, establishing end-to-end traceability, deployment verification and
integrity, and runtime monitoring and security. These principles collectively contribute to a comprehensive and
robust approach to secure software delivery, empowering organizations to build, deploy, and maintain software
with confidence in its security and compliance.

Principle 2: Ensuring Compliance Throughout the Pipeline
Ensuring compliance throughout the software delivery pipeline is an essential principle of secure software delivery.
Compliance with industry regulations, standards, and internal policies is critical to protect sensitive data, maintain
customer trust, and mitigate legal and financial risks. In this section, we will explore the importance of ensuring
compliance throughout the pipeline and discuss the benefits it brings to the software delivery process.

Risk of mishandling or
unauthorized access to
sensitive data

Throughout the pipeline Non-compliance with GDPR,
resulting in data breaches

Compliance Risk Description Stage Example

Data Privacy and Protection

Risk of unauthorized access to
systems, data, or functionalities

Development and deployment
stages

Inadequate access controls
leading to data leaks

Access Control

Software Licensing
Compliance

Risk of using unlicensed or
improperly licensed software

Development and deployment
stages

Unauthorized use of proprietary
software, violating license terms

The following table outlines the top compliance risks in software delivery, their descriptions, the stages where
these risks typically occur, and examples of each risk. It provides an overview of the key compliance concerns
organizations may face throughout the software delivery process.

Image 3: Snapshot of security and compliance checks.

Code scans Passed Test Passed

Approved
(Change Validation,

App dependency
Validation, overall
Quality Validation)

Code
commit to
repository

Build failed

Build
Veri�cation Approvals Test

Veri�cation
Deploy

Veri�cation
Production
Veri�cation

Code Scans
failed

Test failed Rejected

Revision
control
system

Automated
Build

SCA, Code
scans, UT,

SAST, DAST
Test Mannual

Approval Production Monitor &
Operate

Bug Fixes / Hotfixes /
Feature enhancements /

New feature development
Build Passed

P/12

Regulatory Compliance Risk of non-compliance with
industry-specific regulations

Throughout the pipeline Failure to comply with PCI DSS
requirements in payment
processing

Security Vulnerabilities Risk of exploitable vulnerabilities
in software or infrastructure

Development and deployment
stages

Failure to address known
vulnerabilities, leading to
cyberattacks

As the software progresses through the pipeline, compliance risks can also emerge during testing and integra-
tion. It is essential to conduct thorough testing to ensure that the software meets functional requirements and
adheres to industry standards and regulations. This includes validating data protection mechanisms, verifying
the proper handling of personally identifiable information (PII), and performing penetration testing to identify
potential vulnerabilities.

During deployment, organizations must focus on ensuring that the software is deployed in a compliant manner.
This involves enforcing environment-specific security checks, monitoring compliance with industry regulations,
tracking and managing vulnerability exceptions, and generating compliance reports and documentation. By
automating these processes, organizations can streamline compliance efforts, reduce the risk of human error,
and maintain an auditable trail of compliance activities.

Table 4: Top compliance risks in software delivery

A concrete example of compliance risk in software delivery is the General Data Protection Regulation (GDPR).
Organizations that handle personal data of European Union citizens need to ensure compliance with GDPR
requirements throughout the software delivery process. This includes obtaining proper consent, implementing
data protection measures, and providing individuals with the ability to exercise their data rights. Failure to
comply with GDPR can lead to significant fines and reputational damage.

In today's rapidly evolving regulatory landscape, organizations face increasing pressure to ensure compliance
with many internal policies, industry standards, and government regulations. Manual compliance checks and
verification processes are often time-consuming, error-prone, and challenging to scale as software delivery
pipelines become more complex. As a result, organizations are turning to automated compliance solutions to
streamline and enhance their compliance practices.

The Role of Automated Compliance Checks

Table 5: Compliance risk by stage

• Security code analysis for identifying vulnerabilities
• Enforcing coding best practices
• License compliance verification for authorized software use

Stage Automated Compliance Checks

Development

• Vulnerability assessment for identifying security weaknesses
• Data privacy compliance checks for sensitive data protection

Testing

P/13

Automating compliance checks offers several advantages over manual processes. Firstly, it eliminates the
potential for human error, ensuring consistent and accurate validation of compliance requirements throughout
the software delivery lifecycle. Manual compliance checks can be prone to oversight, especially when dealing
with many internal and external policies. With automation, organizations can ensure that no compliance aspect
is overlooked, minimizing the risk of non-compliance.

Furthermore, automating compliance checks enables organizations to keep pace with the ever-changing regula-
tory landscape. As regulations evolve and new requirements emerge, manual processes struggle to adapt
quickly. In contrast, automated solutions can be updated in real-time to incorporate the latest compliance
standards, ensuring that organizations remain compliant at all times.

To effectively automate compliance checks across the software delivery lifecycle, organizations should leverage
a comprehensive Secure Software Delivery Solution (SSD). An SSD solution integrates with the DevOps tool-
chain and employs a combination of policy-based automation, continuous monitoring, and risk assessment
techniques to ensure compliance from development to deployment. Let's explore some examples of how a SSD
solution can automate compliance checks at each stage:

By implementing an SSD solution that encompasses these automated compliance checks, organizations can
achieve numerous benefits. Firstly, it ensures consistent adherence to regulatory requirements and industry
standards, mitigating the risk of non-compliance penalties and reputational damage. Additionally, it reduces the
manual effort and time required for compliance checks, enabling teams to focus on more value-added activities.

Furthermore, automated compliance checks provide real-time visibility into compliance status and potential
risks, empowering organizations to proactively address any issues. By continuously monitoring compliance
throughout the software delivery lifecycle, organizations can promptly identify and rectify compliance gaps,
minimizing the impact on operations and customer trust.

In conclusion, automated compliance checks are indispensable in today's regulatory environment. By leveraging
an SSD solution to automate compliance checks across the software delivery lifecycle, organizations can ensure
consistent adherence to regulatory requirements, industry standards.

• Configuration management checks for adherence to policies
• Environment-specific security checks for regulatory compliance

Staging

• Security patch management for timely application of patches
• Deployment audit and documentation for compliance reporting

Deployment

Implement automated security checks
tailored to each environment, application,
or pipeline stage to ensure compliance with
relevant standards.

Ensures that security measures are
consistently applied at each stage,
reducing the risk of vulnerabilities and
ensuring compliance with regulations.

Best Practice Name Description Benefit

Enforce Environment-Specific Security
Checks

Proactive Risk Mitigation: Automated compliance checks allow for proactive identification and mitigation
of compliance risks throughout the pipeline. By detecting and addressing non-compliance issues early,
organizations can minimize the potential impact and reduce the likelihood of regulatory violations.

Standardization and Consistency: Automation ensures that compliance checks are consistently applied
across all stages of the software delivery process. This standardization reduces the chances of human error
and ensures that compliance measures are uniformly implemented, regardless of the team or environment.

Regulatory Compliance and Avoidance of Penalties: Automated compliance monitoring and validation help
organizations maintain adherence to industry-specific regulations, such as PCI DSS, HIPAA, GDPR, or other
relevant frameworks. By avoiding regulatory penalties and legal liabilities, organizations can protect their
reputation and financial stability.

Risk Mitigation in Vendor Management: Compliance throughout the pipeline extends beyond an organiza-
tion's internal processes. It also involves managing compliance requirements for third-party vendors and
service providers. By ensuring compliance in vendor management, organizations can mitigate risks associat-
ed with external dependencies.

Streamlined Audits and Reporting: Automated compliance tools simplify the audit process by generating
comprehensive reports and documentation on-demand. This streamlines compliance audits and helps
organizations demonstrate their adherence to regulatory requirements and industry standards.

Advantages and Benefits of Automating and Ensuring Compliance
Throughout the Pipeline

Best Practices for Ensuring Compliance Throughout the Pipeline

P/14

Utilize automated monitoring tools to
regularly assess compliance with industry
regulations, standards, and internal
policies.

Provides ongoing visibility into compli-
ance status, enabling organizations to
identify and address any deviations
promptly, reducing compliance risks.

Monitor Compliance with Industry
Regulations

Establish a centralized system to track and
manage vulnerability exceptions,
documenting identified risks and prioritizing
them for remediation.

Enables organizations to effectively track
and prioritize vulnerability remediation
efforts, reducing the overall risk exposure
and enhancing security.

Track and Manage Vulnerability
Exceptions

Implement automated reporting mecha-
nisms to generate compliance reports
on-demand, facilitating the demonstration
of adherence to standards.

Streamlines the process of generating
compliance reports, saving time and
effort while ensuring accurate and
up-to-date documentation for regulatory
purposes.

Automate Compliance Reporting and
Documentation

Establishing End-to-End Traceability
Traceability in the context of software delivery refers to the ability to track all activities across the delivery lifecy-
cle, including changes to code, environment configurations, testing outcomes, and deployment details. It's like a
breadcrumb trail of actions that leads to the final software product. Having complete traceability is crucial for
various reasons, such as incident management, auditing and compliance, debugging and troubleshooting, and
improving software quality.

However, maintaining manual traceability can be challenging. It involves recording, maintaining, and managing a
vast amount of data across different tools and stages of the software delivery lifecycle. This becomes increasingly
difficult as the complexity of the software, tools, and processes increases. Manual methods also often result in
gaps in the data trail due to human error, making it difficult to reconstruct the exact path followed in software
development and delivery.

Understanding the Significance of End-to-End Traceability

Principle 3: Establishing End-to-End Traceability
Ensuring traceability throughout the software delivery pipeline is a fundamental principle of secure software
delivery. Traceability gives organizations complete visibility and accountability, allowing them to track and manage
various aspects of the software development and delivery process. In this chapter, we will delve into the impor-
tance of establishing end-to-end traceability and explore how it enhances the security and reliability of software
delivery.

In the complex landscape of software delivery, traceability plays a vital role in ensuring that every step of the
process is documented and transparent. It enables organizations to track critical information, such as image
provenance, build details, dependency differences, and vulnerability tracking, throughout the software delivery
lifecycle.

End-to-end traceability enables organizations to identify the origins and history of software artifacts, including
container images, libraries, and dependencies. This information is crucial for evaluating the security and integrity
of the software supply chain, mitigating risks associated with third-party components, and ensuring compliance
with industry standards and regulations.

By implementing these best practices and leveraging automation to ensure compliance throughout the pipeline,
organizations can reduce compliance risks, avoid penalties, and maintain a robust security posture in their soft-
ware delivery process. The combination of targeted security checks, ongoing monitoring, effective vulnerability
management, streamlined reporting, and continuous compliance monitoring contributes to a more secure and
compliant software delivery environment.

In the following sections, we will explore the remaining key principles of secure software delivery, including
establishing end-to-end traceability, deployment verification and integrity, and runtime monitoring and security.
Each principle contributes to a comprehensive approach to secure software delivery, emphasizing the importance
of security and providing actionable insights for implementation.

Table 6: Best practices for ensuring compliance throughout the pipeline

Integrate continuous compliance monitor-
ing into the software delivery pipeline to
detect and address deviations in real-time.

Provides real-time visibility into compli-
ance deviations, allowing organizations to
proactively identify and address compli-
ance issues as they arise.

Establish Continuous Compliance
Monitoring

P/15

Table 7: Traceability changes by stage

Who made changes, what changes were made, why were the changes made

Stage Traceability Changes

Code Changes

What tests were run, the results of the tests, and who ran the testsTesting

What versions were deployed, when they were deployed, and who deployed
them

Deployment

Changes in environment configurations, reasons for changes, and who made
these changes

Environment Configuration

Details of the incident, how it was resolved, who was involved in resolving itIncident Management

Implementing automation and real-time traceability throughout the software delivery lifecycle not only helps
maintain a secure and compliant environment but also optimizes the software delivery process, ensuring
high-quality and reliable software products.

To overcome these hurdles, organizations need an automated, real-time traceability solution, a central feature of
Secure Software Delivery (SSD) systems. An effective SSD solution operates as a hub or control plane, automati-
cally tracking every step of the software delivery process and instantly updating records. By leveraging SSD
solutions, organizations minimize human error, rapidly identify and address issues that arise, and streamline com-
pliance with security and regulatory requirements.

A key aspect of real-time traceability facilitated by SSD solutions is the enforcement of 'Separation of Duties'. This
concept is an essential internal control in secure software delivery. It helps prevent fraud and error by ensuring
that at least two individuals are responsible for separate parts of any critical task. By clearly defining and enforcing
these separate responsibilities, an SSD solution promotes accountability and security throughout the software
delivery lifecycle.

Examples of traceability changes that are key to each stage of software delivery:

P/16

Tracking Image Provenance
Image provenance is a critical aspect of the DevSecOps world. It involves understanding the origin, composition,
and history of every software artifact within a container image or software package. The provenance of an image
helps to identify and trace the origins of all components within it, including base images, libraries, and dependen-
cies. Comprehensive visibility into image provenance is paramount for evaluating the security and integrity of the
software supply chain and pinpointing potential risks linked to third-party components.

To comprehend image provenance, there are essential questions we need to answer for every image in our cluster:
What is it? Where did it come from? How can I rebuild it? Does it have any known vulnerabilities? Is it up-to-date?

Let's explore these:

1. What is it? This refers to identifying every component within the image, along with its version and
purpose. It helps in understanding the functionality and the role of each component in the overall
application.

Ensures each component
within the image, its version,
and its purpose is clearly
understood.

Build Provides an understanding of the role
and functionality of each component.

Best Practice Description Stage Benefit

Component Identification

Best Practices for Image Provenance
Let's look at the top five best practices for image provenance: In essence, tracking image provenance is crucial for
secure software delivery. By implementing best practices, we can ensure we know what's happening in our cluster,
enhancing security, transparency, and accountability in our software delivery process.

But the question remains, can we prove these answers? To this end, organizations must employ tools and
technologies that enable image scanning and analysis. These tools help to automatically identify and assess the
security posture of individual components within an image, allowing for proactive risk mitigation and ensuring
that only trusted and verified components are included in the final software deliverables.

For instance, consider a scenario where a software delivery team uses an open-source library in their applica-
tion. The team should be able to trace the library's origin, understand its functionality, identify its version,
determine any known vulnerabilities, and confirm that it is the latest version. If the library has known vulnerabili-
ties, the team can take immediate action, such as updating the library or using an alternative.

1. Where did it come from? Tracing the origin of every component aids in assessing its trustworthiness.
Components from unknown or unverified sources pose security risks, while those from reputable
sources generally follow best practices and are more likely to be secure.

2. How can I rebuild it? A critical aspect of modern software delivery is the ability to recreate the appli-
cation from scratch using the source code and dependencies. This capability is vital for maintaining
the software's longevity and adaptability.

3. Does it have any known vulnerabilities? Tracking vulnerabilities in all components is critical to main-
taining a secure software environment. This involves scanning the components for known vulnerabili-
ties and assessing their impact on the application.

4. Is it up-to-date? Software components need to be kept up-to-date to leverage improvements and
security patches. Using outdated components can expose the application to known vulnerabilities
and compromise performance.

P/17

2.

3.

4.

5.

Traces the origin of every
component in the software
delivery to assess its trustwor-
thiness.

Build and Deployment Assesses the trustworthiness of
components and mitigates potential
security risks.

Origin Tracking

Ensures the ability to recreate
the application from scratch
using the source code and
dependencies.

Continuous Integration Maintains software longevity and
adaptability by ensuring software can be
reliably built from source code.

Rebuild Capability

Involves scanning the compo-
nents for known vulnerabilities
and assessing their impact on
the overall application.

Continuous Integration
and Continuous
Deployment

Ensures a secure software environment
by proactively identifying and addressing
security vulnerabilities.

Vulnerability Tracking

Keeping software components
up-to-date to leverage
improvements and security
patches.

Continuous Deploy-
ment

Leverages improvements and security
patches, and reduces exposure to known
vulnerabilities.

Component Updating

Table 8: Best practices for image provenance

This allows them to swiftly undertake remediation actions, minimizing the window of exposure to the
vulnerability.

The SBOM is not just about tackling vulnerabilities, though. It can also provide insights into the licensing obliga-
tions associated with each software component, helping to maintain compliance with legal requirements. With
these facets, an SBOM becomes a crucial element in pursuing end-to-end traceability, providing a clear view of
what’s in the software, enhancing the security posture, and ensuring compliance.

Ensuring Transparency and Accountability in the Software Delivery Process
End-to-end traceability fosters transparency and accountability in the software delivery process. By capturing and
documenting relevant information at each stage, organizations can maintain a comprehensive audit trail that
records activities, decisions, and changes made throughout the pipeline.

Tracking Build Details, Dependency Differences, and Vulnerability Tracking
Tracking build details, dependency differences, and vulnerability management are three cornerstones of
end-to-end traceability, providing an indelible record of the software delivery lifecycle. They are essential for any
organization aiming to enhance security, compliance, and resilience within its delivery pipeline.

When we delve into build details, we are talking about the fine specifics of the software building process. These
include aspects like the build configurations, the environment variables in use, and the creation of build artifacts.
By capturing these details, organizations gain the ability to recreate builds with precision, dissect and investigate
issues with detailed information, and ensure build consistency across different environments, thus mitigating
software delivery risks.

But how can we stay on top of the changing dependencies that could introduce vulnerabilities to our software?
That's where the concept of tracking dependency differences comes in. Automated tools are pivotal in comparing
the dependencies utilized during different stages of software delivery, such as development, testing, and deploy-
ment. They can spotlight any deviation or vulnerabilities that may have been accidentally introduced, thus enabling
proactive security measures.

This leads us to vulnerability tracking. By integrating vulnerability management tools into the CI/CD pipeline,
organizations can continuously monitor and identify potential vulnerabilities across their software stack. This
process not only allows for timely remediation but also supports the maintenance of a secure and updated soft-
ware ecosystem.

The importance of the Software Bill of Materials (SBOM) becomes clear in this context. An SBOM is an exhaustive
record detailing each software component in a product. Created during the build stage, it is a crucial tool in identi-
fying and managing the dependencies that a software product has. This is because it lists all the details of every
software piece, including the version number, the licensing, and the library dependencies it has.

Consider, for instance, a use case where a vulnerability has been discovered in a widely used open-source library.
With an SBOM, organizations can quickly assess if any of their applications are using the compromised library and,
if so, which versions are affected.

P/18

In essence, tracking image provenance is crucial for secure software delivery. By implementing best practices,
we can ensure we know what's happening in our cluster, enhancing security, transparency, and accountability in
our software delivery process.

Principle 4: Deployment Verification and Integrity
As we continue discussing the key principles of secure software delivery, we arrive at the fourth principle, focusing
on establishing deployment verification and integrity. This stage involves confirming the integrity of the deploy-
ment artifacts, generating and securely storing audit records, and performing code scanning and library change
detection. Let's delve deeper into these facets and how they contribute to a secure software delivery pipeline.

One of the most notable examples of the importance of deployment verification and integrity is the SolarWinds
supply chain attack in 2020. We mentioned this attack in the introduction, but as a reminder, In this breach, threat
actors managed to infiltrate the software build system of SolarWinds, a provider of IT management software, and
insert malicious code into one of their products. This manipulated software was then distributed to about 18,000
customers worldwide.

The malicious code provided backdoor access to the affected systems, leading to massive breaches at several
high-profile targets, including government agencies and private companies. Although the specific details of how
the attackers achieved this are complex and multifaceted, the case serves as a stark reminder of the importance
of ensuring integrity throughout the entire software delivery lifecycle, including during deployment.

If rigorous deployment verification measures had been in place, including automated scanning of software
artifacts, more rigorous checking of the integrity of code and dependencies, and regular auditing of deployment
records, the manipulated software could have been detected earlier, and the scale of the breach might have been
significantly reduced. It’s critical to comprehensive record of all security, compliance, and validation actions taken
throughout the software delivery process.

This audit trail serves multiple purposes. Firstly, it enables organizations to comply with regulatory requirements
and industry standards by providing evidence of adherence to established processes and policies. Secondly, it
facilitates incident investigations and problem resolution by providing a historical record of activities and changes
that occurred during software development and delivery. Lastly, it promotes accountability and collaboration
among teams, as individuals can be held responsible for their actions and decisions throughout the software
delivery lifecycle.

Introducing the Delivery Bill of Materials
As a preface, it's crucial to acknowledge the limitations of the Software Bill of Materials (SBOM). While the SBOM
provides critical insights into the software's components, it only covers up to the build process. Security and
traceability, however, don't end at the build. They extend to the deployment and execution stages, hence the need
for a more encompassing construct: the Delivery Bill of Materials (Delivery BOM).

The Delivery BOM extends the SBOM concept to include deployment metadata and artifacts, providing visibility
and traceability not just into the construction of the software but also it's delivery.

By extending traceability into the deployment process, the Delivery BOM can help verify the integrity of deployed
components and prevent unauthorized or compromised components from reaching production environments.

P/19

Table 9: Delivery BOM role by stage

Includes SAST/DAST checks, branch
protection, code review validation

• Ensures that source code meets security
standards

• Identifies and mitigates security vulnerabilities
early in the development process

• Validates proper branch protection and code
review processes

Stage Delivery BOM Role Benefit

Source Code

Validates build system, CI configura-
tions, unit test coverage

• Verifies the integrity and reliability of the build
• Ensures that proper CI configurations are

followed
• Validates adequate unit test coverage to

maintain code quality

Build Validation

Checks dependencies and performs
vulnerability assessment

• Identifies and mitigates security risks
associated with dependencies

• Ensures the use of secure and up-to-date
software components

Artifact Validation

Involves CIS benchmark checks,
deployment performance validation,
approval validation

• Verifies compliance with security benchmarks
and industry best practices

• Ensures optimal deployment performance
• Validates necessary approvals and adherence

to release processes

Deployment Validation

Delivery Bill of Materials (DBOM)
The Delivery Bill of Materials serves as a comprehensive record of all security, compliance, and validation actions
taken throughout the software delivery process. It encompasses various stages, including source code, build
validation, artifact validation, and deployment validation.

P/20

Image 4: Delivery Bill of Actions and Materials

The Delivery Bill of Materials plays a critical role in security and compliance. It ensures that all necessary checks
and policies are followed throughout the software delivery process, reducing the risk of security breaches and
compliance violations. By consolidating data from the entire delivery process, the DBOM provides a holistic view of
the deployment's security posture and compliance status, enabling organizations to assess and address any
issues.

For DevOps and DevSecOps teams, the Delivery Bill of Materials offers valuable insights and benefits. DevOps
teams can gain a real-time view of the changing delivery landscape, understand the necessary actions during the
delivery process, and document and provide audit information for each deployment. This visibility enables efficient
collaboration and informed decision-making among team members.

On the other hand, the Delivery Bill of Materials empowers security teams with a comprehensive view of the
application deployment's security posture. It consolidates security reporting across the entire CI/CD ecosystem,
simplifying security audits and providing security attestation. Real-time gating of releases based on Delivery Bill of
Materials rules ensures that only compliant and secure software is deployed.

To build a Delivery Bill of Materials, data collection and consolidation are key. A Secure Software Delivery (SSD)
solution is needed to tap into the entire ecosystem and collect relevant information from various stages of the
software delivery process. This includes integrating with build systems, CI pipelines, security scanning tools,
vulnerability management platforms, and deployment monitoring systems. By centralizing and consolidating this
data, organizations can construct a comprehensive Delivery Bill of Materials that provides a complete view of the
security and compliance aspects of their software deployments.

Image 5: Difference between SBOM and DBOM

Delivery Bill of Materials vs. Software Bill of Materials

P/21

One key distinction between the Delivery Bill of Materials and the Software Bill of Materials (SBOM) is that the
DBOM provides a comprehensive view of the entire deployment, whereas the SBOM is focused on software
dependencies. The DBOM consolidates data from the entire delivery process, including security and vulnerabili-
ty checks, static and dynamic code analysis, unit test coverage, source code branch validation, and deployment
environment information.

A comprehensive accounting
of all security, compliance, and
validation actions taken in
association with a software
deployment.

Provides end-to-end
visibility and traceability
of the software delivery
process.

- Leverage an SSD solution to establish a
standardized framework for capturing
and documenting security, compliance,
and validation activities throughout the
delivery process.

- Include details such as source code
checks, build validation, artifact valida-
tion, deployment validation, and other
relevant information.

Delivery Bill of Materials

Best Practice Description Benefit Implementation Tips

Checking the digital signatures
of images before deployment.

Ensures image integrity
and prevents tampered
images from being
deployed.

- Utilize cryptographic algorithms to
generate and verify digital signatures.

- Implement a secure repository to store
signed images and keys.

Image Signature Verification

Creating and securely storing
logs of all deployment activities.

Supports accountability
and provides critical
information for forensic
investigations.

- Implement a centralized logging system
to capture deployment activities.

 - Encrypt and protect audit records to
maintain their integrity.

Deployment Audit Records

Automated scanning of the
source code for security
vulnerabilities.

Detects and fixes
security issues early in
the pipeline.

- Integrate static code analysis tools into
the build process.

- Configure regular scans to ensure
ongoing security assessment.

Secure Code Scanning

In summary, the Delivery Bill of Materials goes beyond the Software Bill of Materials to encompass the entire
software delivery process. It ensures traceability, integrity, and compliance throughout the deployment stages,
providing valuable insights for both DevOps and DevSecOps teams. By leveraging the Delivery Bill of Materials,
organizations can enhance their security posture, streamline compliance efforts, and deliver software with confi-
dence.

Provides a holistic view of the deployment's
security posture and compliance status

Facilitates collaboration and
decision-making for DevOps and
DevSecOps teams

Simplifies security audits and provides
security attestation

Enables real-time gating of releases
based on Delivery BOM rules

P/22

https://www.opsmx.com/intelligent-software-delivery-isd/isd-for-argo/delivery-intelligence/

Delivery BOM Benefits

Ensures all necessary checks
and policies are followed

Reduces the risk of security
breaches and compliance violations

Best Practices for Establishing Deployment Verification and Integrity
Let's now delve into the best practices for establishing deployment verification and integrity, each of them a
significant contributor to the security of your software delivery pipeline:

1. Runtime Verification: Implementing runtime verification mechanisms to monitor the behavior and
integrity of the software during execution. This can involve monitoring for out-of-policy actions,
detecting unauthorized access attempts, and identifying any anomalous behavior that may indicate
a security incident.

Principle 5: Runtime Monitoring and Security
The software delivery journey doesn't end at deployment. Secure Software Delivery (SSD) must incorporate active
monitoring and security management during software execution or runtime. This involves watching for out-of-poli-
cy actions, increasing the incident response capabilities, and securing sensitive data and communications. This
fifth principle of secure software delivery underscores the need to be vigilant even after the software delivery and
to detect and respond to any potential threats in real time.

The concept of runtime security monitoring isn't just about observing the behavior of software in the execution
environment. It's about the constant verification of the state of your software and systems, checking for potential
breaches, intrusions, or anomalies that could signal security risks. It implies the use of sophisticated technology
such as AI/ML to constantly evaluate the integrity of running software and systems, compare behavior against
known policies and procedures, and flag or respond to any deviations.

Runtime monitoring allows organizations to detect and respond to out-of-policy actions, proactively identify
security threats, and ensure the integrity and confidentiality of sensitive data.

Runtime monitoring and security play a pivotal role in identifying and addressing security threats that may arise
during the execution of software. While production security measures such as DDoS protections, perimeter securi-
ty, and zero trust protections for privilege escalation are crucial, runtime monitoring focuses on monitoring for
changes in the runtime environment and detecting any deviations or anomalies that may indicate a security breach
or unauthorized access. By automating this principle through a Secure Software Delivery (SSD) solution, organiza-
tions can proactively detect and respond to security incidents, ensuring the overall security and integrity of their
applications.

Table 10: Best practices for deployment verification

Validating the security posture
of the runtime environment
before deployment.

Prevents deploying into
insecure environments
that could expose the
software to risks.

- Define security standards for the
runtime environment.

- Conduct thorough security assess-
ments and vulnerability scans of the
runtime environment.

Runtime Environment
Validation

Importance of Runtime Monitoring and Security

Runtime monitoring and security involve implementing mechanisms to continuously monitor the runtime environ-
ment, detect security threats, and respond effectively. This includes

How Runtime Monitoring and Security Works

In conclusion, deployment verification and integrity involve a broad array of practices and concepts. From validat-
ing image signatures and code scans to maintaining comprehensive audit records and tracking library changes,
these activities form a robust defense against security vulnerabilities. By extending the concepts of SBOM with
the Delivery BOM, organizations can ensure end-to-end visibility, integrity, and security throughout the software
delivery lifecycle.

Tracking changes in library
dependencies between
different versions.

Detects introduction of
insecure or out-of-date
libraries, enabling
proactive risk mitiga-
tion.

- Utilize dependency management tools
to track library changes.

- Regularly update libraries and address
security vulnerabilities promptly.

Library Change Detection

P/23

Implement continuous
monitoring mechanisms for
real-time event capture and
analysis.

- Proactive threat
detection and timely
incident response.

 - Enhanced visibility
into runtime environ-
ment activities.

- Utilize automated monitoring tools to
capture and analyze runtime events in
real-time.

 - Define alert thresholds and configure
notifications.

Continuous Monitoring

Best Practice Description Benefits Implementation Tips

Integrate the SSD solution with
a SIEM system for centralized
aggregation and analysis of
runtime security events.

- Enhanced detection
and investigation of
security incidents.

 - Improved incident
response capabilities.

- Ensure proper integration between the
SSD solution and the SIEM system.

 - Configure event forwarding and log
collection mechanisms.

Security Information and Event
Management (SIEM) Integration

Integrate threat intelligence
feeds and services to enhance
threat detection capabilities.

- Early detection and
mitigation of known
threats.

- Improved security
posture against
evolving threats.

- Establish integration with threat
intelligence platforms or services.

 - Implement automated threat intelli-
gence analysis.

Threat Intelligence Integration

Automate incident response
processes and workflows for
prompt and consistent
response to security incidents.

- Enables rapid and
consistent incident
response, reducing
response times and
potential impact.

- Define incident response playbooks
and workflows aligned with the capabili-
ties of the SSD solution.

 - Automate common response actions
and escalation procedures.

Incident Response Automation

Best Practices for Runtime Monitoring and Security
Implementing robust runtime monitoring and security practices is crucial for maintaining a secure software envi-
ronment. To achieve this, organizations should adopt a set of best practices that focus on continuous monitoring,
integration with security tools, threat intelligence, automation of incident response, and proactive vulnerability
management. The following best practices provide a comprehensive approach to runtime monitoring and security,
ensuring the integrity, confidentiality, and availability of software systems throughout their lifecycle.

The essence of runtime monitoring and security is vigilance. By implementing runtime verification, enhancing
incident response, and securing data, organizations can ensure that their software remains secure throughout
its lifecycle. An SSD solution that provides these capabilities will play an invaluable role in protecting your
software assets in the dynamic, threat-filled landscape of today's digital world.

1. Incident Response Enhancements: Strengthening incident response capabilities by integrating the
SSD solution with incident response processes. This ensures that security incidents detected during
runtime monitoring are promptly addressed and mitigated. Incident response workflows and play-
books should be defined to align with the capabilities of the SSD solution, enabling effective collab-
oration between security and incident response teams.

2. Secure Data and Communications: Implementing robust measures to secure sensitive data and
communications within the runtime environment. This includes encryption of data at rest and in
transit, secure communication protocols, and access controls to protect sensitive information from
unauthorized access or disclosure.

3. Drift Detection: Monitoring for changes in the runtime environment, such as configuration drift or
changes in binaries. This helps identify potential security vulnerabilities or unauthorized modifica-
tions that may compromise the integrity of the software.

P/24

2.

3.

4.

Conclusion
In conclusion, secure software delivery is crucial in today's complex and dynamic software landscape. With
numerous tools, processes, and teams involved, it becomes essential to adopt a holistic approach that inte-
grates all the disparate data and components. This ebook has outlined key principles and best practices to
address the challenges and risks associated with the software supply chain.

We highlighted the importance of automating risk prevention, ensuring compliance throughout the pipeline,
establishing end-to-end traceability, and verifying deployment integrity. Additionally, we emphasized the
significance of implementing runtime monitoring and security measures to detect and respond to out-of-policy
actions, enhance incident response capabilities, and secure sensitive data in runtime environments.

Furthermore, we introduced the concept of the Delivery Bill of Materials (DBOM) as a crucial component that
extends beyond the build process. The DBOM provides comprehensive accountability and traceability of securi-
ty and compliance actions throughout the software delivery process, ensuring that security measures are not
limited to the build stage alone.

In conclusion, runtime monitoring and security are paramount in ensuring the robustness and protection of
software systems. By implementing runtime verification, enhancing incident response capabilities, and securing
sensitive data and communications in runtime environments, organizations can proactively detect and respond
to out-of-policy actions, mitigate security risks, and maintain a secure software ecosystem. Leveraging automa-
tion and following best practices for runtime monitoring and security enable organizations to fortify their
defenses, stay ahead of potential threats, and ensure the integrity and reliability of their software throughout its
execution.

Implement a proactive
vulnerability management
program to regularly patch and
remediate vulnerabilities in the
runtime environment.

- Reduces the risk of
exploitation of known
vulnerabilities.

- Strengthens the
overall security
posture.

- Implement vulnerability scanning and
assessment tools.

- Establish a process for prioritizing and
addressing vulnerabilities based on
severity.

Vulnerability Patching and
Remediation

P/25

Table 11: Best practices for runtime monitoring and security

At OpsMx, we offer a Secure Software Delivery (SSD) solution designed to help organizations implement
these principles and best practices seamlessly. With OpsMx SSD, you can streamline your software delivery
processes, automate security checks, ensure compliance, and enhance visibility and accountability.

Now is the time to take action and explore OpsMx SSD. Our team is ready to provide a demo and assist you in
implementing secure software delivery practices. Embrace a proactive approach to secure software delivery
and safeguard your software supply chain. Reach out to us today!

About OpsMx

FOR MORE INFORMATION, CONTACT US - OPSMX, INC | 350 OAKMEAD PKWY, SUNNYVALE, CA 94085 |
INFO@OPSMX.COM | WWW.OPSMX.COMINFO@OPSMX.COM https://www.opsmx.com/

